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Abstract

Maintaining a fleet of buses to transport students to school is a major expense for school districts. In or-

der to reduce costs by reusing buses between schools, many districts spread start times across the morning.

However, assigning each school a time involves estimating the impact on transportation costs and reconciling

additional competing objectives. Facing this intricate optimization problem, school districts must resort to ad

hoc approaches, which can be expensive, inequitable, and even detrimental to student health. For example,

there is medical evidence that early high school starts are impacting the development of an entire generation

of students and constitute a major public health crisis. We present a new optimization model for the School

Time Selection Problem (STSP), which relies on a new school bus routing algorithm we call BiRD (Bi-objective

Routing Decomposition). BiRD leverages a natural decomposition of the routing problem, computing and com-

bining subproblem solutions via mixed-integer optimization. It significantly outperforms state-of-the-art routing

methods, and its implementation in Boston has led to $5 million in yearly savings, maintaining service quality for

students despite a 50-bus fleet reduction. Using BiRD, we construct a tractable proxy to transportation costs,

allowing the formulation of the STSP as a multi-objective Generalized Quadratic Assignment Problem. Local

search methods provide high-quality solutions, allowing school districts to explore tradeo↵s between competing

priorities and choose times that best fulfill community needs. In December 2017, the development of this method

led the Boston School Committee to unanimously approve the first school start time reform in thirty years.

In the twenty-first century, school districts across the US face a wide array of challenging problems on a daily

basis, from adjusting to the digital age to educating an increasingly diverse and multicultural student body. Yet

perhaps the most complicated decision that administrators face is seemingly the most innocuous: determining what

time each school in the district should start in the morning and end in the afternoon.

The issue of choosing appropriate school “bell times” has received increased attention in recent years, as too-

early start times have been linked to a wide array of health issues among teenagers, including diminished academic

achievement [6] and cognitive ability [11, 24], and increased rates of obesity [7], depression [17], and tra�c accidents

[12]. Indeed, changes in the body’s circadian clock during puberty e↵ectively prevent adolescents from getting

adequate sleep early in the night [10]. While the American Academy of Pediatrics recommends that teenagers not

start their school day before 8:30AM, a recent CDC report found that just 17.7% of U.S. high schools comply [34].

Some experts estimate that over the next ten years, the dire public health implications of early high school start

times could impact the U.S. economy by over $80 billion [19].

Moreover, research suggests that these repercussions disproportionately a↵ect the most economically disadvan-

taged students [16]. As achievement gaps between students from di↵erent backgrounds remain stark [35], research

has consistently found systematic biases, largely on racial lines [9], that partially explain these gaps. For example,

school bell times can su↵er from such biases, as is the case in Boston [29].

For decades, school districts across America have considered ways to adjust their bell times and solve these

issues in a fair way. However, the sheer complexity of the problem is a major obstacle to change. School districts
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typically struggle with balancing many competing objectives, including student health, special education programs,

parent and sta↵ schedules, state and federal regulations, and public externalities [21].

Perhaps the greatest obstacle to adjusting school bell times is the e↵ect of changes on school transportation.

Over 50 percent of U.S. schoolchildren rely on an army of half a million yellow school buses to travel to and from

school every day. In Boston, where specialized programs draw students from all over the city and tra�c is often

at a standstill, transportation accounts for over 10% of the district’s $1 billion budget. To reduce transportation

spending, school districts such as Boston stagger the start and end times of di↵erent schools, allowing vehicles to

be re-used several times throughout the day. Because many school districts construct bus routes by hand, it is

exceedingly di�cult for them to evaluate the impact of bell time changes on bus costs, let alone find a set of bell

times that satisfies all of the district’s objectives without inflating the budget. No matter how unpalatable, the

status quo is often the only viable option. In addition, because of the impossibility of systemwide change, districts

may experiment with a piecemeal approach to bell time change, where the most vocal and best connected schools

may benefit the most.

The problem of school bus routing has been addressed extensively [14, 25]. It is typically decomposed into

three main subproblems (see Fig. 1D-F): stop assignment, i.e., choosing locations where students will walk from

their homes to get picked up; bus routing, i.e., linking stops together into bus trips; and bus scheduling, i.e.,

combining bus trips into a route that can be served by a single bus. State-of-the-art optimization algorithms exist

for these subproblems in isolation [28, 18]. However, the literature on optimally combining subproblem solutions

is less extensive. Approaches typically involve formulating the school bus routing problem as a large combinatorial

optimization problem which can be solved using metaheuristics, including local search [31], simulated annealing [8],

and special-purpose vehicle routing heuristics [5, 4]. Special-purpose algorithms have also been designed to address

variants of the school bus routing problem, allowing “mixed loads” – students from di↵erent schools riding the bus

together [31, 4, 26], bus transfers [3], or arrival time windows [18, 31, 8, 26].

Unfortunately, many tractable general-purpose algorithms do not consider additional constraints (fleet hetero-

geneity, student-specific needs) and thus lack portability. Though an optimization framework to the School Time

Selection Problem has been proposed [33], no existing algorithms address bell time selection in conjunction with

bus routing [18].

This work presents a new model for the STSP, allowing the joint optimization of school bell times with school

bus routes. We first develop a new school bus routing algorithm called BiRD (Bi-objective Routing Decomposition)

which bridges the gap between standard subproblems to find better solutions. We then propose a mathematical

formulation of the STSP, a multi-objective approach that can model any number of community objectives as well

as transportation costs using BiRD.

BiRD outperforms state-of-the-art methods by 4% to 12% on average on benchmark data sets, and allowed

Boston Public Schools (BPS) to take 50 buses o↵ the road and save almost $5 million in the fall of 2017, without

increasing the average student’s walking or riding times. Our modeling approach to the STSP, along with the

successful implementation of BiRD, led the Boston School Committee to reconsider start time policies for the first

time since 1990, unanimously approving a comprehensive reform prioritizing student health in December 2017. Our

STSP model was used by BPS to evaluate the impact of many di↵erent scenarios and ultimately propose new

bell times for all 125 BPS schools. These start times are being reviewed at the request of parent groups, and our
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Figure 1: Geographic visualization of the school bus routing problem (and subproblems). (A) BPS 2017-18 data
(anonymized) with gray triangles representing students and blue pentagons representing schools. (B) Sample BPS
routing solution, with schools as blue pentagons, bus stops as red squares, and lines connecting bus stops that
are served in sequence by the same bus, illustrating the complexity of Boston school transportation. (C) Small
synthetic district (3 schools); students (triangles) are the same color as their assigned schools (pentagons). (DEF)
Example of 3 main routing steps in this district: stop assignment (D), where students (triangles) attending the
orange school (pentagon) are shown connected to their assigned stops (red squares); one-school routing (E), where
all bus stops for the orange school are connected into bus trips; and bus scheduling between multiple schools (F),
where three trips (one from each school) are connected into a single bus itinerary.
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Figure 2: Overview of BiRD algorithm. On the left, the single-school problem can be divided into the two subprob-
lems of stop assignment and single-school routing; on the right, the multi-school problem can be divided into the
two subproblems of scenario selection and bus scheduling. The generation of not one, but several routing scenarios
for each school, and the subsequent joint selection of a single scenario for each school, bridge the divide between
the single-school and multi-school problems.

approach remains central to Boston start time policy.

School Transportation: A BiRD’s Eye View

Solving the school bus routing problem means assigning students to stops near their homes, selecting which bus

will pick them up and in what order (keeping in mind that a bus only carries students for one school, but can serve

several schools in succession thanks to staggered bell times), in a way that minimizes the overall number of buses,

or another objective of interest. We show an example of a school district (BPS) in Fig. 1A and of a model school

district that mimics the real setting in Fig. 1C and in the SI Appendix, Fig. S2.

The BiRD algorithm consists of several steps (see Fig. 2) for which we develop optimization-based approaches,

implemented with modern software tools [2, 15] and available online [13]. For clarity, we focus on the morning

problem, but our algorithm generalizes to the afternoon (see SI Appendix). Because problem details often vary

between districts, it may be advantageous to adjust some steps to changes in the problem setting. BiRD’s defining

feature is thus the decomposition of the problem, and in particular the scenario selection step which bridges the

gap between the single-school and multi-school subproblems.

Single-School Problem

To assign students to stops (Fig. 1D), we use an integer optimization formulation of the assignment problem, with

maximum walking distance constraints. We minimize the overall number of stops because (i) it simplifies bus trips

and (ii) the minimum pickup time at a stop is typically high, even if the stop has few students. When long bus

routes span the entire city, as in Boston (see Fig. 1B), stop assignment has a negligible e↵ect on the macroscopic
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quality of the routing solution. Our formulation can include additional objectives, such as the total student walking

distance, and can exclude stop assignments that require students to cross major arteries or unsafe areas (see SI

Appendix, Stop Assignment).

We then use an insertion-based algorithm to connect sequences of stops into feasible bus trips (Fig. 1E).

We use integer optimization to combine these feasible trips with a minimum number of buses, with a set cover

formulation reminiscent of crew scheduling problems [30] (see SI Appendix, Single-School Routing). Our method

has the flexibility to handle practical modifications in the routing problem, from vehicles with di↵erent capacities

to student-bus compatibility restrictions (e.g. students in a wheelchair need a bus with a special ramp/lift). In

principle, the modularity of the overall algorithm means that the single-school routing algorithm can be replaced

with any state-of-the-art vehicle routing method.

Routing Multiple Schools

We use the single-school routing method to generate not one, but several varied optimized routing scenarios for

each school, in order to select the best one for the system. In particular, we consider several scenarios on the Pareto

frontier of two objectives (hence the name of Bi-objective Routing Decomposition), number of buses and average

riding time. This tradeo↵ makes sense because shorter routes are more easily connected into bus schedules.

Then, we first jointly select one scenario for each school in a way that favors maximal re-use of buses from

school to school (Fig. 2), by formulating an integer optimization problem with network flow structure that seeks to

minimize the number of buses at the scale of the entire district (see SI Appendix, Scenario Selection). Given one

routing scenario for each school, we can then solve another integer optimization problem to identify a trip-by-trip

itinerary for each bus in the fleet (Fig. 1F). In this final subproblem, we optimize the number of buses jointly in

the morning and in the afternoon (see SI Appendix, Bus Scheduling).

Evaluating the Routing Algorithm

We compare BiRD’s ability to minimize the total number of buses to existing methods [4, 8], on 32 published

benchmarks [26] and on 20 of our own synthetically-generated examples. We outperform all other methods on

all but one instance, with an average improvement of 4% on the instances from [26] and 12% on our instances.

The scenario selection step is key to this improvement: computational experiments (see SI Appendix, Routing

Experiments) indicate that BiRD’s performance improves by 20% when we compute two di↵erent routing scenarios

for each school and select the best one by considering the whole system, as opposed to using the best scenario for

each school. Intuitively, what is optimal for one school may not be optimal for the entire system, motivating the

bi-objective decomposition approach.

Application in Boston

BPS has the highest transportation expenditure per student in the U.S., with rising costs due in part to narrow

streets and infamous rush-hour tra�c, a large fraction of special education students, and a complicated history of

school desegregation. In addition, over the last decade BPS has adopted a “controlled choice” approach to school

selection, which gives parents greater latitude in selecting a public school while promoting fairness across the district
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[1, 27]. As a result of this policy, some schools may draw students from far across the city, further complicating the

school transportation problem and driving up costs.

Before we started working with BPS, bus routes for 125 public schools and over 80 private and charter schools

were computed and maintained manually. BiRD’s ability to incorporate district-specific constraints (including four

di↵erent bus types, and only one compatible with wheelchairs) was essential in producing a practical solution. In

the end, we solved the Boston school bus routing problem using only 530 buses, against 650 for the manual solution.

This represents an 18% reduction, with estimated cost savings in the range of $10 to $15 million. To ensure a smooth

transition, BPS decided to only take 50 buses o↵ the road in the first year of implementation, still amounting to

a hefty $5 million in cost savings [22]. Despite the smaller number of buses, the average student ride time stayed

constant from 2016-2017 (around 23 minutes).

Formulating the STSP

Selecting bell times is a complex policy problem with many stakeholders. We first focus on the interplay with

transportation, since computing school bus routes is a necessary component of bell time selection. For instance, it

is of interest to evaluate transportation costs when each school S is assigned a particular bell time tS . However,

there are too many possibilities to explore in practice (exponential in the number of schools). Instead, we develop a

general formulation for the STSP, which contains a tractable proxy for transportation cost constructed using BiRD.

We show how to include other community objectives in the next section.

Transportation Costs

A key factor in an optimized school bus routing solution is the “compatibility” of pairs of trips, i.e., how easy it is

for a single bus to serve them with minimum idle time in between. We define a trip compatibility cost that trades

o↵ (a) the feasibility of a bus serving the two trips sequentially, and (b) the amount of idle or empty driving time

involved, with tradeo↵ parameters that depend on characteristics of the school district, and can be found using

cross-validation. Then, for any pair of schools S and S0, we can define a routing pairwise a�nity cost croutingS,t,S0,t0 that

is the sum of the compatibility costs between every trip in every routing scenario for S at time t and S0 at t0 (see

SI Appendix, Transportation Costs).

Optimizing

Because its objective function only includes pairwise a�nity costs, our model of the STSP is a special case of the

Generalized Quadratic Assignment Problem (GQAP) [20]. When di↵erent GQAP formulations for the STSP were

investigated in [33], even small instances could be intractable. We therefore develop a simple local improvement

heuristic that works well in practice. Given initial bell times, we select a random subset of schools. The problem of

finding the optimal start times for this subset, while fixing all other schools’ start times, is also a GQAP.

We can then solve this restricted GQAP problem using mixed-integer optimization to obtain a new set of bell

times, in seconds for small enough subsets. We repeat the operation with new random subsets until convergence.

Results on synthetic data suggest that a subset size of one gives near-optimal results, if the local improvement
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Figure 3: Bell time optimization. Comparison of 3 bell time optimization strategies on a synthetic district. When
only three bell times are allowed, balancing the number of bus routes across bell times (A) works well, but is
typically beaten by routing compatibility optimization (B). Even better solutions can be obtained by allowing more
bell times in the middle tier (C). In comparison, BPS bell times are not even balanced (D).

heuristic is run several times with random starting points. We note that the heuristic is interpretable: with a subset

size of n, a solution obtained after convergence can only be improved by changing the bell times of at least n + 1

schools.

Evaluating three-tier systems

In many districts, such as Boston (Fig. 3D), start times are separated into three equally spaced “tiers” (e.g. 7:30AM,

8:30AM and 9:30AM). Such a system allows each bus to serve up to three schools every morning [23], so districts

will typically try to balance the number of bus trips across all three tiers. Our method allows us to quantify the

empirical behavior of this intuitive idea.

Simulations suggest that optimizing three-tier bell times using our algorithm (Fig. 3A) yields an 11% cost

improvement over simply balancing the number of bus routes across tiers (Fig. 3B), which is already better than what

school districts typically do (Fig. 3D). Distributing schools across tiers without accounting for geography/routing

compatibility is suboptimal.

Furthermore, a three-tier system is not necessarily the right answer per se. Fig. 3C shows that allowing

many possible start times for the middle tier (5-minute intervals between 8:00AM and 9:00AM) can yield a 1-2%

improvement over the standard three-tier optimized solution (Fig. 3B). Interestingly, no school starts at 8:30AM in
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Figure 4: Equity and current start times in Boston. (A) Maps of Boston, with neighborhoods shaded by median
household income (ACS) and average elementary start time. Elementary students start later in wealthier neighbor-
hoods (0.78 correlation between household income and start time). (B) Proportion of high school students starting
before each time in the morning (comparing economically disadvantaged and other students). Start times skew early
for economically disadvantaged high school students (�2 homogeneity p-value < 10�5). (C) BPS Community Sur-
vey response rate by school, shown against fraction of disadvantaged students attending the school. Economically
fragile populations have a lower bell time survey response rate.

this system. Though tiered bell times are popular because of their simplicity, algorithmic tools such as ours suggest

that better solutions exist. For instance, in Boston, we can find a bell time solution that requires just 450 buses,

which represents a 15% improvement over the number of buses obtained without changing the bell times, and a

31% improvement over the number of buses used by BPS in the 2016-2017 school year.

Bell Times in Practice

In a real district, bell time selection goes far beyond minimizing the number of buses, as we found in our work with

BPS. For context, Boston’s existing bell time policy, enacted in 1990, split the public schools into three tiers, with

start times of 7:30AM, 8:30AM, and 9:30AM, stipulating that tiers would rotate through the start times every 5

years. Unfortunately, this policy was never enforced, and the bell times assigned in 1990 mostly remain today.

These bell times are flawed. First, because they have remained static while school demographics have evolved,

they have contributed to the steady rise of the BPS transportation budget over the last decade. Second, over 74%
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Figure 6: Bell time selection tradeo↵s. Sample of a few scenarios considered by BPS. Current start times (with
or without new routes) have many high school students starting before 8:00AM (Early HS) and elementary school
students ending after 4:00PM (Late ES), mediocre community satisfaction (survey score), and a suboptimal bell
time distribution both in the morning and in the afternoon (histogram weighted by students – blue AM, orange PM).
The three other scenarios present di↵erent tradeo↵s between the bell time objectives – BPS chose the “Optimal”
scenario.

of high school students currently start school before 8:00AM. Many studies have shown that the negative e↵ects

of early high school starts are magnified in economically fragile students [16]. However, in Boston such students

have worse bell times, on average, than economically advantaged students [29]. In Fig. 4, we see for example that

economically disadvantaged high school students are more likely to start before 7:30AM than other high school

students.

Gridlock

The Boston status quo has persisted for decades despite its shortcomings. Indeed, bell time selection is intrinsically

di�cult because stakeholders cannot agree on what is best for everyone. Figs. 5B and 5C show community

preferences for di↵erent start times across all public schools, obtained through a BPS survey. Though families and

school sta↵ tend to favor start times between 8:00AM and 8:30AM, the displayed preferences are mostly characterized
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by broad disagreement, even within a single school (Fig. 5C). Any bell time for any school is sure to have both

fervent supporters and vehement critics.

School districts have no hope of satisfying all, or even most, of their constituents. Moreover, the cost of even

trying to satisfy the individual preferences of parents and sta↵ can be prohibitive: Fig. 5A shows that each

additional point of community satisfaction in Boston can cost dozens of additional buses and tens of millions of

taxpayer dollars.

For BPS, the tradeo↵ curve in Fig. 5A represented a paradigm shift, the first time the district could visualize, or

even quantify, any of the tradeo↵s of bell time policymaking. The curve illustrates our model’s first use: providing

a district the quantitative support necessary to understand the problem and make the best decision.

The Greater Good

Though stakeholders have many competing personal priorities, they often agree on broader goals, such as having

fair and equitable bell times or reinvesting saved transportation costs into schools. Starting in 2016, BPS led an

engagement process aiming to understand broad community values. The results suggested four main objectives:

to maximize how many high school students start after 8:00AM, minimize how many elementary school students

end after 4:00PM, prioritize schools with high special education needs, and reinvest transportation savings into

classrooms, while achieving these objectives in an equitable manner.

In the general case, solving the STSP in practice means optimizing a set of several objectives, such as the ones

outlined above. We call an objective GQAP-representable if it can be represented using only single a�nity costs cS,t

(representing the aversion of school S for bell time t) and pairwise a�nity costs cS,t,S0,t0 We find that the GQAP

framework has su�cient modeling power to represent all the objectives and constraints that interest school districts

in general (see SI Appendix, GQAP-Representable Objectives) and Boston in particular.

Typically, school districts will wish to balance multiple GQAP-representable objectives, including transportation

costs. As is usual in multi-objective optimization, we consider that the final cost function to optimize is a weighted

average of the district’s di↵erent (GQAP-representable) objectives, with weights indicating policy makers’ priorities.

We explored tens of thousands of tradeo↵s for BPS, such as those presented in Fig. 6. We notice that in Boston,

reducing both the number of high school students starting too early and the number of elementary school students

ending too late can be done at little to no cost.

Application in Boston

In December 2017, the Boston School Committee unanimously approved a new policy [32], stipulating that all

future bell time solutions should optimize the verifiable criteria described above, paving the way for algorithmic

bell time selection. Our flexible methodology allowed us to take into account a number of very specific constraints,

e.g. preventing large neighboring high schools to dismiss at the same time (which could create unsafe situations

at neighboring MBTA stops). In the end, the proposed bell times (see Fig. 6) reduced the number of high school

students starting before 8:00AM from 74% to 6%, and the number of elementary school students dismissing after

4:00 from 33% to 15%. The plan also led to an estimated reinvestment of up to $18 million into classrooms. Due

to the significant amount of change under this new plan, and in response to protests by some families, BPS delayed

10



the plan’s implementation to allow more time to adjust the objective weights and constraints. As BPS continues to

gather community input, the legitimate concerns raised by these families can be modeled as objectives within our

general formulation and integrated within our framework.

Ultimately, using an algorithm for bell time selection at the scale of a city allows leaders to thoroughly evaluate

their options, and empowers them to make decisions based not on the political whims of special interest groups,

but on an objective standard agreed upon by the community.
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In this Supplementary Material, we present the details of the methods described in the Main

Text. In particular, we introduce the mathematical notation and formalism needed to formulate

and solve di↵erent optimization subproblems. We first describe the BiRD school bus routing

algorithm in full detail, then we specify the setting of our computational experiments, in particular

with respect to synthetic data. Subsequently, we present our mathematical formulation of the

School Time Selection Problem (STSP), explain the details of our optimization algorithm and how

it interfaces with school bus routing, before detailing our computational work, on both synthetic

and real data.

BiRD Routing Algorithm

We begin by giving a complete mathematical description of the BiRD (Bi-objective Routing De-

composition) algorithm for school bus routing. In the Main Text, we decompose the overall problem

of school transportation into a single-school problem and multi-school problem. The single-school

problem can be further decomposed into the two subproblems of stop assignment and single-school

routing, while the multi-school problem can be further decomposed into the two subproblems of

scenario selection and bus scheduling (the overall decomposition is detailed diagrammatically in

Fig. 2). In this section, we detail the four subproblems of stop assignment, single-school rout-

ing, scenario selection and bus scheduling in order. Throughout the section, the (mixed-)integer

⇤
2nd round of revisions, Proceedings of the National Academy of Science (PNAS)
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optimization problems that we formulate are solved using a mixed-integer optimization solver.

Stop Assignment

Call S the set of schools, and Ps the set of pupils (students) attending each school S 2 S. In

addition, call C the set of all locations that can serve as bus stops. Each student p 2 PS is

associated with a set of allowed bus stops Cp ✓ C. The walking distance from the home of student

p to a stop c 2 Cp is denoted as dp,c. This general setting reflects a variety of student-specific

needs. For example, the allowed bus stops for younger students may be closer to their home or

accessible without crossing major arteries. In addition, a pupil p with special needs may require a

“door-to-door” pickup: in this case, the set Cp is a singleton {c}, where dp,c = 0.

The problem of stop assignment has received attention in recent years, with the development

of innovative new modeling approaches and algorithms as in Zeng, Chopra and Smilowitz [16]. We

propose a simple integer optimization approach, where we seek to minimize the number of stops

for each school and the total student walking distance. Similarly to a facility location problem [6],

we solve the following integer program for each school S.

min
X

c2C

zc + �
X

p2PS

X

c2Cp

dp,cyp,c (1a)

s.t. yp,c  zc 8p 2 PS, c 2 Cp (1b)
X

c2Cp

yp,c = 1 8p 2 PS (1c)

yp,c 2 {0, 1} 8p 2 PS, c 2 Cp (1d)

zc 2 {0, 1} 8c 2 C (1e)

The binary variable zc indicates whether stop c is selected for school S, and the binary variable

yp,c indicates whether student p is assigned to stop c. (1b) ensures that student p is assigned to

stop c only if stop c is selected for school S, and (1c) certifies that each student is assigned to one

stop. The first term in the objective corresponds to the total number of stops for school S, while

the second term corresponds to the total walking distance for students attending school S. The

parameter � controls the tradeo↵ between these two priorities. For large values of �, students will

be assigned to the nearest stop to their home; as � tends to 0, students may walk further from

their home in order to consolidate several stops (though never to an unacceptable stop that is not
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in Cp). We explore this tradeo↵ on synthetic data in Fig. 3a.

When applying this process in Boston, we added an additional constraint preventing the same

stop from having too many students at the same time. This correlates the stop assignment solutions

of each school, requiring the concurrent optimization of stop assignments for all schools.

Single-School Routing

Given that each student p has been assigned a bus stop cp 2 Cp, we now turn to the problem of

connecting stops into bus routes (or bus trips). Since several students may be assigned to the same

stop, we can denote as CS ✓ C the set of bus stops with at least one student from school S, and

call nc,S the number of students from school S at a stop c 2 CS.

We consider that the bus fleet is composed of several bus types, and denote the set of bus

types as B. All buses of a given type b 2 B are considered identical, with a fixed number of seats

(capacity) Qb, and a fixed number of wheelchair spots Wb. Let Y designate the set of bus depots

(or bus yards) where buses are stored during the night and the middle of the day.

We let tpickupc,S designate the length of time needed to pick up every student for school S at stop c,

and tdrop-o↵S the length of time needed to drop o↵ every student on a bus at school S. Note that the

former is a function of the number of students at the stop nc,S, while the latter is independent of

the number of students on the bus. For any two locations `1, `2 2 S [C [Y , and given a particular

time of day ⌧ , let tdrive`1,`2,⌧ designate the driving time from location `1 to location `2, when departing

location `1 at time ⌧ . Finally, we consider that all buses serving school S must arrive at school at

time ⌧S to drop o↵ their students, and are therefore free to leave the school at time ⌧S + tdrop-o↵S .

We also consider that students cannot spend more than a fixed duration Tmax on the bus.

Throughout this paper, we consider that the travel times tdrive`1,`2,⌧ are deterministic and known.

We note that this modeling choice makes it more di�cult to account for unforeseen tra�c events

such as accidents. These travel times can be obtained through a commercial service like the

Google Maps API, or estimated from data. In practice, school bus routes are typically constructed

under a static, deterministic travel time model, and stakeholders understand that this results in

buses sometimes arriving late, especially in poor weather or tra�c conditions. As a simple way

to mitigate the impact of tra�c in our work with BPS, we artificially increased the drop-o↵ times

tdrop-o↵S at each school, e.g. requiring buses to arrive at school 10 or 15 minutes before the beginning

of school even though physically unloading students may only require 3 minutes. This “bu↵er”

both reduces the chance that students will be late to class, and makes it less likely that delays will
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be compounded onto the bus’s next trip. However, no matter what travel time estimates are used,

it is practically impossible for buses to always be on time.

For school S, there are many methods from the vehicle routing literature to find bus trips to

serve all the stops in CS [8, 10, 12, 1]. A trip (or route) is simply an ordered sequence of stops

visited, or served, by a bus. We assume that a bus serving a trip will pick up every student at

each stop in the trip. A trip is considered feasible if (a) it verifies that no student spends more

than a time Tmax between pickup and drop-o↵, and (b) there exists a type of vehicle in the fleet

with enough capacity to transport all students assigned to the stops served by the trip. Given a

feasible trip R, we let BR ✓ B designate the set of types of buses that have the necessary capacity

to serve the trip, and we denote by TR the service time of the trip, i.e. the time between arrival at

the first stop and arrival at the destination school.

We use a randomized greedy heuristic (Algorithm 1) similar to Braca et al. [3, 4] to generate a

set of feasible trips TS, making sure that each stop c 2 CS is served by a nonempty set of feasible

trips Tc ⇢ TS. More precisely, the heuristic returns a set of trips T that covers each stop exactly

once, and we run it N times to build a set of feasible trips where each stop is covered by several

trips. The heuristic returns N di↵erent solutions and each stop will be covered by N di↵erent

feasible trips.

We index the trips in TS by 1, . . . ,mS and for a given set of trips T ✓ TS we let I(T ) designate

the subset of {1, . . . ,mS} corresponding to trips in T . We can then find the best set of routes by

solving the following minimum cover problem [13].

min �
mSX

i=1

ri +
mSX

i=1

ri⇥i (2a)

s.t.
X

i2I(Tc)

ri � 1 8c 2 CS (2b)

ri 2 {0, 1} 8i 2 {1, . . . ,mS} (2c)

The binary variable ri indicates whether trip i is selected. Constraint (2b) imposes that every

stop must be served by at least one trip. For each trip i in TS, we have ⇥i =
P

p:cp2Ci
✓(i)p , where

Ci represents the list of stops served by the i-th trip i, and ✓(i)p corresponds to the time spent by

student p on the bus during trip i. Thus, the parameter � controls the importance of the number

of trips relative to the total time students spend on the bus.

In the optimal solution of the problem above, some stops may be served by more than one trip.
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Algorithm 1 Randomized greedy insertion heuristic, assuming only one type of bus with capacity
Q. Input: a school S and a time of day ⌧

1: function GreedyRandomized(S, ⌧)
2: T  ; . Initialize empty set of trips
3: while CS 6= ; do
4: c randomly selected from CS

5: CS  CS\{c}
6: R [c] . Trip initialized with selected stop c
7: N students

 nc,S . Number of students currently on trip R
8: while CS 6= ; do
9: T new, cnew, inew  BestInsertion(R, CS, ⌧)
10: if T new

 Tmax and N students + ncnew,S  Q then

11: R Insert(R, cnew, inew)
12: CS  CS\{cnew}
13: else

14: break

15: T  T [ {R}

16: return T

17: function BestInsertion(R, CS, ⌧)
18: Let R := [c1, c2, . . . , cn] . Name the n stops in R for clarity of notation
19: T best

 1; cbest  1; ibest  1 . Initialize total trip time, stop to insert, insertion slot
in trip

20: for c 2 CS do

21: for i 0 to n do

22: T  tpickupc,S . Include pickup time first
23: if i = 0 then

24: T  T + tdrivec,c1,⌧ +
Pn�1

j=1
tdrivecj ,cj+1,⌧ + tdrivecn,S,⌧ . c inserted before c1

25: else if i=n then

26: T  T +
Pn�1

j=1
tdrivecj ,cj+1,⌧ + tdrivecn,c,⌧ + tdrivec,S,⌧ . c inserted after cn

27: else

28: T  T +
Pi

j=1
tdrivecj ,cj+1,⌧ + tdriveci,c,⌧ + tdrivec,ci+1,⌧ +

Pn�1

j=i+1
tdrivecj ,cj+1,⌧ + tdrivecn,S,⌧ . c inserted

between ci and ci+1

29: if T < T best
then

30: T best
 T ; cbest  c; ibest  i

31: T best
 T best +

Pn
j=1

tpickupcj ,S

32: return T best, cbest, ibest

33: function Insert(R, c, i)
34: Let R := [c1, c2, . . . , cn]
35: if i = 0 then

36: R [c, c1, . . . , cn]
37: else if i=n then

38: R [c1, . . . , cn, c]
39: else

40: R [c1, . . . , ci, c, ci+1, . . . , cn]

41: return R
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We consider the set of trips T opt

c ⇢ TS serving each such stop c. For each i 2 I(T opt

c ), we compute

the improvement �i to the objective of (2) that would be obtained by removing stop c from trip

i. We let c remain in trip j, such that j = argmini2I(T opt
c )

�i, and remove it from all other trips in

T
opt

c .

To gain tractability at the expense of full optimality, it is easy to split up this trip selection

phase into K phases, where the first phase selects the best trips among the first N/K greedy

solutions, then the second phase selects the best trips among the trips from the next N/K routing

solutions and the optimal trips from the first phase, etc.

The output of this algorithm is a set of trips T ⇤

S that covers every stop in CS exactly once. We

can perform this iterative optimization algorithm several times for di↵erent values of the tradeo↵

parameter � to obtain an array of varied routing scenarios for each school. Low values of � will

lead to scenarios with more buses but shorter trips, while high values of � will produce scenarios

with longer trips but fewer buses.

For each school S 2 S, we therefore end up with a set of routing scenarios RS = {T
h
S }

h=hS
h=1

,

where each scenario is a complete set of trips T h
S that covers every stop in CS exactly once. Each

scenario is located in a di↵erent region of the Pareto front between two objectives, the number of

buses and the average student travel time, hence the name of Bi-objective Routing Decomposition

(BiRD).

Because our overall school bus routing approach is modular, the methods we propose to solve

the single-school routing problem can easily be replaced, e.g. by heuristic approaches [5]. The

only requirement on such substitute approaches is that they be able to produce several di↵erent

solutions for each school, trading o↵ between the average time students spend on the bus and the

number of bus trips.

Scenario Selection

We develop a bus scheduling algorithm that bridges the gap with the bus routing problem. The

algorithm takes as input a set of scenarios RS of size hS for each school S. Because what is optimal

for one school may not be optimal for the entire system, our goal is to jointly select one scenario

for each school in a way that minimizes the desired objective (e.g. number of buses) across the

whole district.

In order to select a single-school solution for each school in a way that minimizes the total

number of buses, we formulate an integer network flow problem on a graph where nodes represent
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Figure 1: Diagram of the scenario selection graph for a small example of a school bus routing
problem with three schools. Each school is represented by a diagonally striped rectangle, with two
associated routing scenarios, represented by lightly shaded rectangles within the larger rectangle
of the school. Note that for the two schools on the left, the two scenarios do not have the same
overall number of trips (e.g. 3 trips vs. 2 trips for School 1), while this is not the case for the school
on the right (both scenarios consist of two trips). Black arrows represent edges from trip nodes
to availability nodes (within each school), and from availability nodes to trip nodes (modeling bus
reuse between schools). Light gray arrows represent edges between trip/availability nodes and the
yard/depot node.
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bus trips, which are served when they are traversed by a unit of flow. To simplify notation, we

assume at first there exists only one type of bus; we then create the following “scenario selection

graph” (N ,A). The set of nodes N consists of (i) a single depot node y, (ii) a “trip node” ⇢S,h,R

for each school S, each scenario index 1  h  hS, and each trip R 2 T
h
S , and (iii) an “availability

node” aS,h for each school S and for each routing scenario 1  h  hS. The set of arcs A includes

an arc from y to each trip node ⇢S,h,R, from each trip node ⇢S,h,R to the corresponding availability

node aS,h, and from each availability node aS,h back to the depot y. We also include an arc from

each availability node aS,h to each trip node ⇢S0,h0,R0 where trip R0
2 T

h0
S0 is time-compatible with

a bus starting from school S. By time-compatible we mean that there is enough time for the bus

to drive from school S to the first stop cstartR0 of trip R0 and then make it to school S 0 on time,

which can be expressed as ⌧S + tdrop-o↵S + tdriveS,cstart
R0 ,⌧S

+ TR  ⌧S0 . For a node i 2 N , let I(i) ✓ N be

the in-neighborhood of node i, and O(i) ✓ N designate the out-neighborhood of i. We display a

diagram of the scenario selection graph for a small example with three schools in Fig. 1.

Given the graph described above, we consider that a unit of flow traversing a series of trip

nodes corresponds to a bus serving the corresponding trips in order. Therefore, minimizing the

total number of buses corresponds to minimizing the total flow out of the yard node y subject to

the constraints that (a) flows along all arcs must be integral and (b) given that a particular single-

school routing solution T
h
S is selected for school S, every trip R 2 T

h
S must be served by exactly

one bus (i.e. each node ⇢S,h,R is traversed by exactly one unit of flow). We therefore formulate the

following network flow problem with integer flow variables f j
i for each arc (i, j).

min
X

S2S

hSX

h=1

X

R2T h
S

f
⇢S,h,R
y (3a)

s.t. f
aS,h
⇢S,h,R = zS,h S 2 S, 1  h 2 hS, R 2 T

h
S (3b)

X

j2I(i)

f i
j =

X

j2O(i)

f j
i 8i 2 N (3c)

hSX

h=1

zS,h = 1 8S 2 S (3d)

zS,h 2 {0, 1} 8S 2 S, 1  h  hS (3e)

f j
i 2 Z+ 8(i, j) 2 A. (3f)

The binary variable zS,h is 1 if T h
S is the selected set of trips for school S, and constraint (3d)
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ensures that exactly one set of trips is selected for each school. Constraint (3c) ensures conservation

of flow f j
i at each node i, with the following interpretation at each node. At the depot node y, it

means that buses leaving the depot must eventually come back. At a trip node ⇢S,h,R, it means

that a bus serving trip R must then become available at school S at time ⌧S + tdrop-o↵S . At an

availability node aS,h, it means that a bus that is available at a school after serving a trip must

either return to the yard or serve another trip. Constraint (3b) guarantees that a particular set of

trips is selected if and only if each trip is assigned to exactly one bus.

The formulation above has a large number of integer variables, on the order of 2 million for a

problem with 200 schools and 5 scenarios per school. However, commercial solvers such as Gurobi

can solve it to optimality in less than two hours. Intuitively, the network flow formulation is quite

strong, allowing the relaxation-based techniques and other heuristics implemented in modern MIO

solvers to tackle it successfully.

The formulation above can easily be modified if there is more than one type of bus available

(|B| > 1). All we need to do is create a new graph such that each trip node ⇢S,h,R maps to the

set of nodes {⇢S,h,R,b}b2BR in the new graph (one for each bus type), and similarly map the yard

node y and the availability nodes for each school aS,h to sets of nodes {yb}b2B and {aS,h,b}b2B. For

every arc (i, j) in the original arc set A, we create a new arc (ib, jb) in the new graph, and modify

constraint (3b) such that only one of the trip nodes {⇢S,h,R,b}b2BR can be traversed, e↵ectively

selecting the bus type that will serve trip R.

Bus Scheduling

The last step of our routing methodology involves determining final bus schedules given exactly

one routing scenario for each school. We use a similar approach to the one described above for

scenario selection. We define a “bus selection graph” (N̄ , Ā), where the set of nodes N̄ consists of

(i) a node yb,` for each bus type b 2 B and each physical bus depot location ` 2 L, (ii) a trip node

⇢AM

S,R,b,` (respectively ⇢PMS,R,b,`) for each school S, each morning trip R in the selected scenario T
AM

S

(respectively each afternoon trip R 2 T
PM

S ), each bus type b 2 BR, and each depot location ` 2 L.

The set of arcs Ā includes (i) an arc to and from the depot node yb,` for each trip node ⇢AM

S,R,b,`

and ⇢PMS,R,b,`, (ii) an arc from each trip node ⇢AM

S,R,b,l (resp. ⇢PMS,R,b,l) to each trip node ⇢AM

S0,R0,b,l (resp.

⇢PMS0,R0,b,l) where trip R0 for school S 0 is time-compatible with a bus starting from school S. For

a node i 2 N̄ , let Ī(i) ✓ N̄ designate the in-neighborhood of node i, and Ō(i) ✓ N̄ designate

the out-neighborhood of i. For depot nodes yb,`, define Ō
AM(yb,`) = Ō(yb,`) \ {⇢AM

S,R,b,` 2 N̄ :
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S 2 S, R 2 T
AM

S }, and define Ō
PM(yb,`) similarly. We assign a cost ci,j to each arc (i, j) 2 Ā to

represent the objective we are trying to optimize (fuel consumption, driving distance, etc.), and

introduce auxiliary variables to minimize the number of buses. Solving the bus scheduling problem

corresponds to solving the following mixed-integer optimization problem.

min �
X

b2B

X

`2L

cbKb,` + (1� �)
X

(i,j)2Ā

ci,jf
j
i (4a)

X

j2Ī(i)

f i
j =

X

j2Ō(i)

f j
i 8i 2 N̄ (4b)

X

b2B

X

`2L

X

i2Ī(⇢qS,R,b,l)

f
⇢qS,R,b,`

i = 1 8S 2 S, 8R 2 T
q
S , q 2 {AM,PM} (4c)

X

i2Ōq(yb,`)

f i
yb,`
 Kb,` 8b 2 B, ` 2 L, q 2 {AM,PM} (4d)

Kb,` 2 Z+ 8b 2 B, 8` 2 L (4e)

f j
i 2 {0, 1} 8(i, j) 2 Ā. (4f)

The flow variables indicate f j
i select the bus type and origin depot for the bus serving each trip,

as well as the sequence of trips served by each bus. Meanwhile, the variables Kb,` represent the

number of buses of type b coming from bus yard location l, and they are related to the variables f j
i

by constraint (4d). Constraint (4b) enforces flow conservation, which simply means that buses must

leave the yard, serve at least one trip, and then return to the yard. Constraint (4c) enforces that

each trip is served by exactly one bus, from one particular depot location and of one particular type.

In the objective, cb > 0 represents the cost of a bus of type b, ci,j designates the cost of a particular

edge in the graph (driving distance, fuel consumption, etc.), and � controls the relative importance

of the two parts of the objective (number of buses and driving distance/fuel consumption). Note

that the combination of constraint (4d) and the positive cost associated with Kb,` in the objective

ensure that Kb,` is the maximum of the number of morning buses and the number of afternoon

buses (of type b, from location `).

While the previous subproblem of scenario selection has not been priorly studied to our knowl-

edge, the bus scheduling subproblem has received significant attention, from Fügenschuh [9], Bögl

et al. [2], Spada et al. [14], and others.

Readers will note that we only solve the morning and afternoon problems jointly in the last step
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(bus scheduling) of the BiRD algorithm. In principle, there is no reason not to solve morning and

afternoon together at the scenario selection step as well. However, we found that treating morning

and afternoon separately at the scenario selection step did not significantly a↵ect the final solution

while meaningfully improving tractability.

Routing Experiments

We now describe the setting for our computational experiments, and present a more thorough

overview of the results from the Main Text. We evaluate BiRD using our own synthetic examples,

as well as sample problems from the literature. We first illustrate the way we generate synthetic

experiments and the insights that they can provide. We then detail the process used to compare

BiRD to existing approaches from the literature, using synthetic problems from Park, Tae and

Kim [11].

Synthetic Experiments and Results

In order to build intuition about the BiRD algorithmic framework, we first study its performance

on our own synthetically generated examples. We consider a school district as a square (30km

by 30km) in the 2D plane, in which we sample |S| school locations at random. We fix the total

number of students to |P|, among which we sample |S| � 1 students pi1 , . . . , pi|S|�1
uniformly at

random without replacement, and enforce WLOG that 0 = i0 < i1 < . . . < i|S|�1 < i|S| = |P|.

Then we assign all students pi such that ik�1 < i  ik to school k. For any point x and any positive

real number ⇢, let U⇢(x) designate the uniform distribution over the disk of radius ⇢ centered at x.

For each school with location xS, we select a radius RS ⇠ U(RS, RS). The first student for

that school is assigned a location sampled from UR(xS), and every subsequent student location is

sampled with probability q from Ur(xp), where xp designates the location of the previous student,

and with probability 1 � q from UR(xS). This procedure creates small clusters of students which

can be thought of as small “neighborhoods”. Each school is randomly assigned a start time of

7:30, 8:30, or 9:30, and a day length of 7, 8, or 9 hours. Finally, for each student with location

xp, we create a bus stop with location sampled from Urs(xp). A large example of a synthetically

generated district is shown in Fig. 2.

We begin with the stop assignment problem, exploring the tradeo↵ between the average student

walking distance and the number of stops per school. We generate 100 synthetic school district
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A B

Figure 2: Geographic visualizations of two school districts. Small gray triangles represent students,
while larger blue pentagons represent schools. (A) Boston Public Schools, 2017-18 school year
(anonymized). (B) Synthetic school district with 100 schools, generated as described in the SI
section on Synthetic Experiments.
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(a) Tradeo↵ between average number of stops per

school and average student-to-stop walking dis-

tance. Experiment on synthetic school district with

100 schools and 10,000 students. As the average

walking distance increases, the number of stops de-

creases. The convexity of the tradeo↵ curve suggests

diminishing returns in increasing the average walk-

ing distance.

(b) E↵ect of the number of scenarios on the total

number of buses. As we increase the number of var-

ied scenarios for each school, we create more room

for optimization: the algorithm can select shorter

routes for some schools, and longer routes for other

schools, in a way that maximizes bus re-use. Over-

all, using several scenarios can yield as much as a

25% improvement in the number of buses. Using

just two scenarios for school already improves the

objective by 20%. Results are averaged over 100

random synthetic districts, with error bars corre-

sponding to the standard deviation of the number

of buses.

Figure 3: Analysis of performance of algorithm components on synthetic data.
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instances with 100 schools and 10,000 students, and vary the stop assignment tradeo↵ parameter

�. The results can be seen in Fig. 3a, showing that it is possible to reduce the average student

walking distance by more than 25% without adding more than one or two stops per school.

Next, we generate 100 synthetic instances with 50 schools and 5,000 students to study the

e↵ect of the number of scenarios. For each school, we generate ten scenarios with di↵erent values

of the single-school tradeo↵ parameter �. For each scenario, we combine randomized routes such

that each stop is covered by 400 routes, in 20 phases of 20 routes each. Then we solve the

scenario-selection problem using ⇢ scenarios, for ⇢ = 1, . . . , 10. We use cross-validation to select

the specific subset of size ⇢ among the considered values of �. The results, shown in Fig. 3b

support the intuitive statement that “what is optimal for one school may not be optimal for the

entire system”, as choosing two routing options for each school yields a 20% improvement over

choosing just one. In addition, the number of scenarios quickly yields diminishing returns, which

is useful because it enables us to solve the scenario selection problem with two or three scenarios

per school (increasing tractability) and obtain a solution that is almost as good as one computed

with many more scenarios per school.

Comparison with Existing Methods

We have shown empirically that our approach of computing several single-school scenarios and

jointly selecting the best option for each school gives very good results. In this section, we compare

the performance of the BiRD algorithm to other methods from the literature.

We first compare the performance of the algorithm on benchmark synthetic data sets from

Park, Tae and Kim [11]. As we mentioned before, the school bus routing problem has a large

number of variants, including mixed loads and drop-o↵ time windows. The benchmark data sets

have a time window (between 10 and 30 minutes depending on the school) associated with each

school corresponding to possible drop-o↵ times, and buses serving the same school can thus arrive

at di↵erent times. In contrast, our implementation of BiRD assumes that all buses for a given

school must arrive at the same time. We therefore modify the benchmark datasets such that all

school start times are fixed at the beginning of the provided time window.

Having computed a single start time for each school, we are now ready to solve the school bus

routing problem. We consider two categories of benchmarks, RSRB and CSCB, which are generated

slightly di↵erently (see the original paper for details). Each one assumes that stop assignment has

been performed as a preprocessing step, and can be solved assuming the maximum ride time Tmax
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is 45 minutes (2700 s) or 90 minutes (5400 s). The RSRB benchmarks have 8 di↵erent problems

of varying size, while the CSCB benchmarks have 16 di↵erent problems of varying size (of which,

following Chen et al. [5], we only consider the first 8).

For each instance, we compare the following solution approaches (all code is provided on Github

[7]):

1. Our own implementation of the location-based heuristic of Braca et al. [3] (with the constraint

that all buses for a given school arrive at the same time), with a number of buses denoted as

ZLBH.

2. The BiRD algorithm with eight scenarios for each school (using eight di↵erent values of �:

102, 5 · 102, 5 · 103, 104, 5 · 104, 105, 5 · 105, 106 – note: for one instance, we compute fourteen

scenarios for each school). We then perform the scenario selection and bus scheduling steps

with the overall number of buses as the only objective. We denote this number of buses as

ZBiRD.

3. The BiRD algorithm with only one scenario for each school (using � = 1, i.e. e↵ectively

minimizing the number of buses for each school). We write this number of buses Z1.

4. Our own partial re-implementation of the method from Chen et al. [5]. More specifically, we

use the single-school routes computed by Chen et al. and published along with their paper.

We then solve the bus scheduling problem with the previously-discussed constraint that all

buses for a particular school arrive at the school at the same time, to ensure consistency with

the other methods. We denote this number of buses as ZChen.

5. A hybrid BiRD method where we add the routes from Chen et al. [5] to the eight scenarios

for each school computed in approach number 2 above, and perform the scenario selection

and bus scheduling steps with the resulting nine solutions for each school. We denote the

number of buses obtained by this method as ZHyb. Note that the solutions computed by

methods 2 and 4 are both feasible in this setting, meaning that ZHyb is guaranteed to be no

worse than ZChen and ZBiRD.

Results are presented in Table 1 and can be replicated using our Julia package released on

Github [7], which includes code for all the methods described above. We notice that BiRD with

several scenarios matches or improves upon the best of LBH and Chen et al.’s combination of
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Number of buses Improvement
Instance MRT (s) Nsch Nstops Nstud ZLBH Z1 ZChen ZBiRD ZHyb BiRD Hybrid

RSRB01 2700 6 250 3409 38 31 31 31 31 0% 0%
RSRB02 2700 12 250 3670 34 31 30 30 29 0% 3%
RSRB03 2700 12 500 6794 64 56 56 55 55 2% 2%
RSRB04 2700 25 500 6805 77 63 62 63 62 -2% 0%
RSRB05 2700 25 1000 13,765 123 101 105 100 100 5% 5%
RSRB06 2700 50 1000 12,201 120 104 106 104 103 2% 3%
RSRB07 2700 50 2000 26,912 205 173 173 164 161 5% 7%
RSRB08 2700 100 2000 31,939 220 181 188 175 173 7% 8%
CSCB01 2700 6 250 3907 39 33 34 33 33 3% 3%
CSCB02 2700 12 250 3204 43 37 37 37 37 0% 0%
CSCB03 2700 12 500 6813 73 67 66 65 64 2% 3%
CSCB04 2700 25 500 7541 81 70 73 69 69 5% 5%
CSCB05 2700 25 1000 16,996 158 146 146 143 143 2% 2%
CSCB06 2700 50 1000 18,232 162 141 145 141 140 3% 3%
CSCB07 2700 50 2000 27,594 240 218 223 206 206 8% 8%
CSCB08 2700 100 2000 27,945 234 192 195 188 186 4% 5%

Average 2700 119.4 102.8 104.4 100.2 99.4 3% 4%

RSRB01 5400 6 250 3409 33 31 31 31 31 0% 0%
RSRB02 5400 12 250 3670 33 27 27 26 26 4% 4%
RSRB03 5400 12 500 6794 52 52 50 50 50 0% 0%
RSRB04 5400 25 500 6805 55 52 50 50 49 0% 2%
RSRB05 5400 25 1000 13,765 95 93 93 91 91 2% 2%
RSRB06 5400 50 1000 12,201 93 82 86 76 76 12% 12%
RSRB07 5400 50 2000 26,912 162 162 166 152 151 6% 7%
RSRB08 5400 100 2000 31,939 186 167 174 154 152 11% 13%
CSCB01 5400 6 250 3907 31 31 32 30 30 3% 3%
CSCB02 5400 12 250 3204 29 29 29 28 28 3% 3%
CSCB03 5400 12 500 6813 61 56 52 51 51 2% 2%
CSCB04 5400 25 500 7541 57 52 51 48 48 6% 6%
CSCB05 5400 25 1000 16,996 131 127 128 121 121 5% 5%
CSCB06 5400 50 1000 18,232 127 122 124 116 114 6% 8%
CSCB07 5400 50 2000 27,594 181 178 170 163 162 4% 5%
CSCB08 5400 100 2000 27,945 174 155 149 140 136 6% 9%

Average 5400 93.8 88.5 88.3 82.9 82.3 4% 5%

Table 1: Comparison of BiRD with existing methods on synthetic data benchmarks.
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simulated annealing and CPLEX in all but one instance, with an average improvement of about

4%.

The results also suggest that BiRD’s modularity allows it to benefit from the advantages of

other methods. When the routes computed by Chen et al.’s method are considered in addition

to other scenarios, our method outperforms Chen et al.’s by 5% on average. The idea of using

multiple scenarios allows BiRD to leverage the strengths of other methods. Indeed, it seems that

most of BiRD’s improvement comes from the central idea of multiple scenarios for each school.

Indeed, BiRD with a single scenario per school gives comparable results to Chen et al.’s method.

This is to be expected: both methods aim to minimize the number of buses for each school before

solving the bus scheduling subproblem using mixed-integer optimization. The only di↵erence is

that our single-school solutions are computed with the mixed-integer optimization-based heuristic

described earlier, while Chen et al.’s are computed using local search and simulated annealing.

The benchmark data sets from Park, Tae and Kim [11] are useful because they have been used by

several authors to compare their methods. However, there are only a few such benchmarks, and they

do not necessarily reflect a wide range of potential school districts (for example, schools can start

as early as 5AM and as late as 10AM, which corresponds to a much larger spread than in most US

school districts including Boston). More generally, the school bus routing literature su↵ers from a

lack of benchmark instances that can be used to compare di↵erent solution approaches. Therefore,

another contribution of this work is the publication of open-source code that can generate and

visualize synthetic examples as described in the previous section, to be used in future work on the

school bus routing problem.

We can use these new synthetic examples to further study the performance of our method. In

particular, we are interested in studying cases where the number of schools and the number of

stops per school are both large. We consider 20 synthetically generated instances with varying

parameters, described in Table 2. We compare solution approaches 1, 2 and 3 above.

The results, shown in Table 2, suggest that the BiRD algorithm with multiple scenarios per

school significantly outperforms competing methods on large-scale instances, with a number of

buses that is 12% lower, on average, than the next best solution. We notice also that in these

instances, minimizing the number of buses for each school performs quite poorly (worse than

LBH), because it makes bus re-use extremely di�cult. Code to reproduce the results from Table 2

is also provided in our Github repository [7].

Since BiRD is a heuristic, it provides no guarantees as to the optimality of the solution. Fur-
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Number of buses
Instance Nsch Nstops Nstud ZLBH Z1 ZBiRD Improvement

1 50 3544 5000 117 128 104 11%
2 100 7785 10,000 229 246 195 15%
3 150 12,248 15,000 327 365 283 14%
4 200 16,875 20,000 438 465 385 12%
5 50 3683 5000 111 129 106 5%
6 100 7969 10,000 228 251 196 14%
7 150 12,492 15,000 330 366 281 15%
8 200 17,155 20,000 436 470 388 11%
9 50 3808 5000 113 130 105 7%
10 100 8,156 10,000 234 249 199 15%
11 150 12,729 15,000 334 363 286 14%
12 200 17,430 20,000 442 478 384 13%
13 50 3924 5000 115 129 107 7%
14 100 8336 10,000 236 251 202 14%
15 150 12,967 15,000 331 361 284 14%
16 200 17,699 20,000 447 479 383 14%
17 50 4042 5000 118 133 107 9%
18 100 8503 10,000 236 248 202 14%
19 150 13,184 15,000 335 366 286 15%
20 200 17,942 20,000 443 470 391 12%

Average 280.0 303.9 243.7 12%

Table 2: Comparison of BiRD with other methods on large-scale synthetic data benchmarks.
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thermore, the question of finding lower bounds for the school bus routing problem has received

very little attention and remains very much open. To our knowledge, only Park, Tae and Kim [11]

have made a serious attempt at finding a lower bound, and they themselves concede that much

improvement is still needed. Because solving the school bus routing algorithm exactly is intractable

for large instances, and good lower bounds do not really exist, quantifying the e↵ect of the problem

decomposition on the optimality of the final solution remains an open question.

Bell Time Selection

In this section, we present the details of our mathematical formulation for the School Time Selection

Problem (STSP) and describe our synthetic experiments.

Transportation Costs

Given the complexity of the school bus routing problem when school start times are fixed, jointly

optimizing bus routes and bell times is clearly a very intractable problem, which grows exponen-

tially in size with the number of schools. The key idea of our approach is thus to find a reasonable

proxy for the transportation cost of any start time assignment. We choose to define pairwise

routing costs croutingS,t,S0,t0 in a bid to balance tractability with expressivity (pairwise costs allow us to

capture interaction between pairs of schools).

The main intuition behind the routing costs croutingS,t,S0,t0 is the fact that costs are lower if individual

buses can serve as many trips as possible. Therefore, the main factor in reducing the number of

buses is the “compatibility” of groups of trips, i.e. how easy it is for a single bus to serve a certain

set of trips without wasting time waiting or driving without passengers. Given two trips R and

R0, let �t be the time between the end of R and the beginning of R0. We define a piecewise linear

compatibility cost cR,R0 that is low if it is profitable for a bus to serve the two trips sequentially.

More precisely:

• cR,R0 = 0 if it is impossible for a bus to serve the two trips successively

• cR,R0 = 0 if �t � T̄ with T̄ a compatibility parameter that defines the maximal time a bus

can drive between two trips for them to be “compatible”.

• cR,R0 = � T̄��t
T̄

otherwise, i.e. the cost is �1 when �t = 0 and R0 can be served immediately

after R and then increases linearly to 0 as �t increases to T̄ .

19



For each school and each year for which we enrollment data is available, we compute a set of

varied bus routing scenarios as described earlier. The scenarios are selected so that they are likely

to be used in the optimal school bus routing solution. For each school, we therefore obtain a list

of scenarios that is the union of all the scenarios obtained from each year of data. Then, for two

schools S and S 0, we can define a compatibility cost ccompat
S,t,S0,t0 that is the sum of the compatibility

costs cR,R0 and cR0,R for every trip R in every routing scenario for school S and every trip R0 in

every routing scenario for school S 0 when the schools bell times are respectively t and t0.

Our experiments show that the costs ccompat are good approximation of how the choice of bell

time allows the routes of di↵erent schools to be “compatible” across the years. Choosing bell times

that maximize this compatibility indirectly minimizes the future transportation costs incurred by

the district. It turns out that maximizing the compatibility of di↵erent routes as described has the

unwanted tendency to lead to a reduced number of schools with early and late start times, which

has a negative impact on the number of buses in the solution. This is a consequence of using a

simple pairwise a�nity cost that only takes into account groups of two schools. In practice, we

can counteract this adversarial e↵ect by adding a cost that encourages bell times to be spread

out over all allowed values: cspreadS,t,S0,t0 = �|t � t0|. The final transportation costs are therefore

defined as crouting = ccompat(T̄ ) + �cspread where T̄ and � are the two parameters that depend

on fundamental characteristics of the school district, and can be found using cross-validation.

Ultimately, the transportation costs do not need to be perfect: year-to-year enrollment changes

mean that directional information is more than enough in practice.

Given the routing costs defined above, and temporarily ignoring all other objectives, the STSP

can be formulated as a Generalized Quadratic Assignment Problem (GQAP), for example using
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integer optimization:

min
X

S2S

X

t2TS

X

S02S

X

t02TS0

croutingS,t,S0,t0zS,t,S0,t0 (5a)

s.t.
X

t2TS

aS,t = 1 8S 2 S (5b)

zS,t,S0,t0 � aS,t + aS0,t0 � 1 8S 2 S, t 2 TS, S
0
2 S, t0 2 TS0 (5c)

zS,t,S0,t0  aS,t 8S 2 S, t 2 TS, S
0
2 S, t0 2 TS0 (5d)

zS,t,S0,t0  aS0,t0 8S 2 S, t 2 TS, S
0
2 S, t0 2 TS0 (5e)

zS,t,S0,t0 2 {0, 1} 8S 2 S, t 2 TS, S
0
2 S, t0 2 TS0 (5f)

aS,t 2 {0, 1} 8S 2 S, t 2 TS. (5g)

(5h)

In the formulation above, the key decision variable aS,t is 1 when school S is assigned time t,

and 0 otherwise. Similarly, the decision variable zS,t,S0,t0 is 1 when schools S and S 0 are respectively

assigned times t and t0, and 0 otherwise. The set TS designates all bell times that are allowed

for school S (this is a discrete, finite set, e.g. every 10 minutes between 7:30AM and 9:30AM).

Constraint (5b) enforces that each school is assigned exactly one time, while constraints (5c), (5d)

and (5e) enforce the relationship between the single and pairwise decision variables aS,t and zS,t,S0,t0 .

A similar formulation is proposed in [15].

Bell Time Optimization on Synthetic Data

We have formulated the STSP as a GQAP, and we solve it using a simple local improvement

heuristic, which randomly selects a smaller subset of schools and optimizes their start times,

keeping the bell times of all other schools fixed. Given an initial bell time assignment {t0S}S2S , and

having selected a subset S1 ✓ S, it turns out that the problem of finding the optimal start times

for this subset is still a GQAP. We can formulate this GQAP as an integer program as above, solve

it using a commercial solver such as Gurobi, and iterate until a stopping criterion is met.

We now turn to synthetic data to examine the e↵ect of the parameters of the local improvement

heuristic, namely the size of the subset and the number of iterations. The first tradeo↵ we explore

is the size of the optimized subset. Clearly, as the number of schools in the optimized subset

increases, the local improvement heuristic will find better solutions, but each iteration will take
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more time. To understand this tradeo↵, we run 100 randomly-generated experiments with 100

schools. For each one, we first select a random starting point (leftmost column), then we perform

1024 iterations one school at a time, followed by 512 iterations two schools at a time, etc. Each

time, we double the number of schools in the optimized subset and halve the number of iterations,

so that in expectation each school features in the optimized subset the same number of times. We

show results in Fig. 4a. We notice that compared to a random solution, optimizing one school at a

time already drastically improves the quality of the solution, and subsequently increasing the size

of the optimized subset does not have a strong e↵ect on the quality of the solution. In addition,

using random restarts, i.e. running the experiment several times with di↵erent random starting

points and keeping the best one, has a very significant e↵ect on the optimization gap. In fact, it

seems that using several random restarts has a much stronger e↵ect on the solution quality than

increasing the number of schools that are optimized at each iteration.

To model transportation costs, we introduced costs crouting = ccompat(T̄ ) + �cspread. We claim

that the optimal bell time assignment given these costs indeed induces a routing solution with a

small number of buses. We support this claim with the experiments described in the Main Text,

Fig. 3. We present another set of experiments here which also support the same point. We consider

a problem instance with 100 schools, where the only objective is to minimize transportation costs,

and the allowed bell times either follow 3 “tiers” (7:30, 8:30, 9:30) or encompass all 15-minute

intervals between 7:15 and 9:30. We compare three optimization strategies. The first (“random”)

assigns each school a bell time uniformly at random across the universe of possibilities (possibly

with some random restarts to improve solution quality). The second (“balanced”) simply tries to

balance the number of routes into evenly spaced tiers, with a parameter controlling the spacing

between the tiers which we can choose by cross-validation. The third (“connected”) is the one

described in the Section “Transportation Costs”.

The results averaged over 100 random instances, which can be seen in Fig. 4b, show that our

optimization strategy consistently and significantly outperforms the other two in both experimental

settings. We notice that the random assignment strategy works quite well in the case when only

three bell times are allowed, even better than the strategy that tries to balance routes into evenly

spaced tiers. However, the random strategy is not able to make use of the additional allowed

bell times in the second set of experiments, while both optimization strategies achieve significant

improvements when the number of allowed bell times for each school increases.
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(a) E↵ect of subset size on quality of solution found

by optimization-based heuristic, averaged over 100

synthetic experiments. As the subset size increases,

the optimization gap decreases. In addition, random

restarts have a stronger e↵ect on the solution quality

than increasing the size of the optimized subset.

(b) Comparison of di↵erent routing cost approxi-

mations for bell time optimization. Two settings

are considered: three bell time tiers, i.e., schools

may only start at 7:30, 8:30 or 9:30, and all bell

times, when every 5-minute interval between 7:15

and 9:30 is allowed. The random assignment strat-

egy performs well when there are only three allowed

bell times, but poorly when all bell times between

7:15 and 9:30 are allowed. Approximating routing

costs using the routing compatibility costs described

in the SI section on Transportation Costs (“con-

nected” experiment) gives better results in all cases

than simply making sure the number of routes is

balanced across tiers without regard for the actual

compatibility of these routes.

Figure 4: Results of bell time optimization algorithm on synthetic data.
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GQAP-Representable Objectives

As discussed in the “Bell Times in Practice” section of the Main Text, the start time assignment

problem typically involves many objectives beyond the simple optimization of transportation costs.

We present many such objectives here, and show how they can be integrated within the GQAP

framework.

Many real-world objectives can be represented using single a�nity costs cS,t. Here are a few of

the possibilities we explored in collaboration with BPS:

• Limiting change from the current bell times can be achieved by setting cS,t to a positive value

when t is di↵erent from the current time tcurrent for school S. The specific value can exhibit

any functional dependence on t and tcurrent.

• Incorporating individual school preferences. Districts can easily quantify the preferences of

various stakeholders at a particular school, from teachers and sta↵ to parents and students,

using surveys, focus groups, etc. These preferences can then easily be converted into aversion

costs cS,t.

• Favoring a particular school. Sometimes, a district may wish to prioritize the needs of

a particular set of schools S0 ✓ S, in order to bolster academic achievements, support

economically disadvantaged students, or provide a more auspicious environment for students

with special needs. This objective can be achieved by penalizing less desirable times more

for S 2 S0 than for S /2 S0. For example, in Boston, we optimized a preference score for

schools with a high number of special education students (weighted by the number of these

students).

• Promoting later high school start times/earlier elementary school end times can be achieved

by penalizing undesirable times for each school with a high cost.

• Interfacing with after-school programs/school-specific constraints. If a school must end before

a certain time to leave time for a specific extracurricular activity, or to alleviate tra�c

congestion in the city, it is straightforward to compute the cost of such undesirable times and

consider this as an objective.

Also allowing pairwise a�nity costs cS,t,S0,t0 increases modeling power by allowing the represen-

tation of more complicated real-world objectives:
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• Allowing school partnerships. Groups of schools often partner to o↵er joint extracurriculars

or athletic competitions. Schools can also share all or part of their transportation. Partner

schools may therefore require compatible bell times, i.e. bell times that are within a particular

interval.

• Considering externalities. School districts may wish to separate the start and/or end time of

some pairs of schools to prevent fights between rival students or reduce the strain on public

transportation.

• Ensuring equity. Single costs allow a school district to model average school satisfaction, while

pairwise a�nity costs also allow it to model the variance in satisfaction across neighborhoods,

communities, or the entire district. Consider two sets of schools S1,S2 ✓ S, and let µ(i)
S be

1/|Si| if S 2 Si and 0 otherwise. Consider a metric which assigns cost ĉS,t to bell time t for

school S. Then the squared di↵erence �S1,S2(t) of the mean of ĉ between the two considered

subsets can be written as

�S1,S2(t) =

 
X

S2S

µ(1)

S ĉS,tS �
X

S2S

µ(2)

S ĉS,tS

!2

=

 
X

S2S

⇣
µ(1)

S � µ(2)

S

⌘
ĉS,tS

!2

(6a)

=
X

S2S

⇣
µ(1)

S � µ(2)

S

⌘2
ĉ2S,tS +

X

S2S

X

S02S,S0 6=S

⇣
µ(1)

S � µ(2)

S

⌘⇣
µ(1)

S0 � µ(2)

S0

⌘
ĉS,tS ĉS0,tS0 . (6b)

The above objective is GQAP-representable, if we define single a�nity costs c̄S,t =
⇣
µ(1)

S � µ(2)

S

⌘2
ĉ2S,t

and pairwise a�nity costs c̄S,t,S0,t0 =
⇣
µ(1)

S � µ(2)

S

⌘⇣
µ(1)

S0 � µ(2)

S0

⌘
ĉS,tS ĉS0,tS0 , and this property

generalizes to arbitrary weights µ, allowing districts to ensure equity across all communities

and populations in a district.

We note that pairwise a�nity costs are more general than single a�nity costs since optimizing

any single a�nity cost cS,t is equivalent to optimizing the corresponding pairwise a�nity cost

cS,t,S0,t0 , which equals cS,t when S = S 0 and t = t0, and 0 otherwise. For ease of notation, we choose

to represent all single costs in this manner.

Our complete approach to the STSP is thus a multi-objective formulation. Specifically, given

a set of GQAP-representable objectives {c↵}↵=A
↵=1

(one of which could be the routing costs crouting

and corresponding priority weights ⌘↵ (both of which are determined by the school district), we
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replace the routing-only objective (5a) with the weighted sum of all of the district’s objectives:

min
X

S2S

X

t2TS

X

S02S

X

t02TS0

↵=AX

↵=1

⌘↵c
↵
S,t,S0,t0zS,t,S0,t0 . (7)

Policymakers are free to vary the priority weights ⌘↵ to explore tradeo↵s between competing ob-

jectives.

Boston Community Survey

A typical example of a real-world objective that school districts must take into account is commu-

nity satisfaction. We describe the data collected by BPS to understand the preferences of parents,

teachers and sta↵.

When BPS began exploring the idea of bell time adjustment in the fall of 2016, they launched a

community survey in order to understand the preferences of various stakeholders, including parents,

teachers and sta↵. The survey included both an online and phone component. Parents and school

sta↵ were asked to score all bell times between 7:00 and 9:30 (every 15 minutes) between 1 (worst)

and 7 (best).

To reduce noise in the survey (e.g some parents rate all bell times as 1 or 2 while other parents

rate all bell times as 6 or 7), we normalize these scores so that (a) they lie between 0 and 1, and

(b) for any respondent, their favorite bell time is rated a 1 and their least favorite a 0. Then the

preference score (or survey score) of a particular bell time assignment is the average (weighted by

enrollment) of the preference scores of each school for their assigned bell time, where the preference

score for a school S at a given bell time t is the average of the normalized preferences of all school

S’s parents and sta↵ for bell time t, where parent preferences carry twice as much weight as

sta↵ preferences (the ratio was decided by BPS). To handle schools with too few responses, we add

three “dummy parents” to all schools’ responses, with preferences equal to the average of all parent

preferences across the entire survey. The results in Fig. 5 and Table 1 rely on this community

survey.

The main insight provided by the survey was the general disagreement of parents within each

school. BPS realized that optimizing the average preference score was not very meaningful because

every bell time would have both supporters and critics at every school. Therefore, they moved

towards optimizing broader objectives (e.g. moving high schools later) rather than optimizing this
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particular preference score.

Because of the survey’s low response rate in some schools, it did not provide conclusive answers

to all of BPS’s questions. For instance, it is not clear whether households of di↵erent income

levels have di↵erent preferences for the start times of their younger children due to di↵erent work

schedules.

Conclusion

We describe the BiRD algorithm, a new optimization-based heuristic approach to school bus rout-

ing which outperforms existing methods from the literature, as well as the first modeling and

algorithmic solution to the School Time Selection Problem (STSP). The tools we develop can be

useful to school districts, to reduce overhead operational costs and invest directly into students, in

a way that fits the priorities and needs of the community.
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[9] Armin Fügenschuh. Solving a school bus scheduling problem with integer programming.

European Journal of Operational Research, 193(3):867–884, 2009.

[10] Junhyuk Park and Byung-In Kim. The school bus routing problem: A review. European

Journal of operational research, 202(2):311–319, 2010.

[11] Junhyuk Park, Hyunchul Tae, and Byung-In Kim. A post-improvement procedure for

the mixed load school bus routing problem. European Journal of Operational Research,

217(1):204–213, 2012.

[12] Patrick Schittekat, Marc Sevaux, and Kenneth Sorensen. A mathematical formulation for

a school bus routing problem. In Intl Conf on Serv Syst and Serv Mgmt, volume 2, pages

1552–1557. IEEE, 2006.

[13] Barbara M Smith and Anthony Wren. A bus crew scheduling system using a set covering

formulation. Transportation Research Part A: General, 22(2):97–108, 1988.

[14] Michela Spada, Michel Bierlaire, and Th M Liebling. Decision-aiding methodology for the

school bus routing and scheduling problem. Transportation Science, 39(4):477–490, 2005.

[15] Colin Wenzel. Optimale schulanfangszeiten zur entlastung des nahverkehrs in der stadt

nürnberg. Angewandte Mathematik und Optimierung Schriftenreihe (AMOS), 2016.

[16] Liwei Zeng, Sunil Chopra, and Karen Smilowitz. The covering path problem on a grid. arXiv

preprint arXiv:1709.07485, 2017.

28

https://github.com/adelarue/SchoolBusRouting
https://github.com/adelarue/SchoolBusRouting

