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Getting students to the right school at the right time can pose a challenge for school districts in the United

States, which must balance educational objectives with operational ones, often on a shoestring budget.

Examples of such operational challenges include deciding which students should attend, how they should

travel to school, and what time classes should start. From an optimizer’s perspective, these decision problems

are difficult to solve in isolation, and present a formidable challenge to solve together. In this paper, we

develop an optimization-based approach to three key problems in school operations: school assignment,

school bus routing, and school start time selection. Our methodology is comprehensive, flexible enough to

accommodate a variety of problem specifics, and relies on a tractable decomposition approach. In particular,

it comprises a new algorithm for jointly scheduling school buses and selecting school start times, that

leverages a simplifying assumption of fixed route arrival times, and a post-improvement heuristic to jointly

optimize assignment, bus routing and scheduling. We evaluate our methodology on simulated and real data

from Boston Public Schools, with the case study of a summer program for special education students. Using

summer 2019 data, we find that replacing the actual student-to-school assignment with our method could

lead to total cost savings of up to 8%. A simplified version of our assignment algorithm was used by the

district in the summer of 2021 to analyze the cost tradeoffs between several scenarios and ultimately select

and assign students to schools for the summer.

Key words : optimization, education, transportation, school bus scheduling, modeling, public sector

1. Introduction

Public schools in the United States play a significant role in ensuring all children have

equitable access to education. Yet before students even step through the school doors,

administrators must solve a wide array of operational challenges to ensure their school

district is able to deliver on its educational mission. In particular, districts must decide

which school students will attend, how they will get there, and what time school should

start.
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While simple to state, these questions can prove difficult to answer in practice. While

public-school students largely attended the nearest school for the better part of the twen-

tieth century, increasingly widespread school choice programs allow students to attend

schools further from their home. Correspondingly, they raise important questions around

the fair allocation of school seats (Abdulkadiroglu and Sönmez 2003). Farther home-to-

school distances, coupled with the burgeoning population of major US cities, make man-

aging local bus fleets — which collectively add up to half a million yellow school buses

nationwide — a challenge. The average U.S. school district spends about $1,000 per trans-

ported student per year for a total nationwide expenditure of $25 billion, and large districts

such as Boston with many special education students spend as much as $5,000 per trans-

ported student (NCES 2021, Boston Public Schools 2018). To keep costs down, many

districts opt to stagger the start and end times of different schools, allowing buses to serve

multiple schools in succession instead of remaining idle for most of the day. This strategy

can create large savings, but also increases the difficulty of finding a cost-efficient schedule

that works for students, teachers and staff (Bertsimas et al. 2019).

These operational challenges are the source of major headaches for school districts across

the US. Suboptimal solutions can divert precious funds from classrooms, which ultimately

can negatively impact the quality of education students receive. School assignment, school

transportation, and school start times are interconnected problems; it is complex enough

for practitioners to solve them in isolation, much less to unravel their interplay. Yet under-

standing how these decisions interact is a key priority for administrators when considering

strategic policy changes such as school or transportation eligibility. The goal of this paper

is to develop optimization models for key problems in public school operations, and to

show how these models can be applied in practice to inform policy decisions.

Our work is motivated by a real-world case study at Boston Public Schools. Each sum-

mer, the district runs a 5-week program called “Extended School Year” (ESY) for students

with special needs, designed to prevent summer learning loss through continued academic

programming. From an operational perspective, the ESY program presents a microcosm of

the challenges faced by the school district during the normal school year, from assignment

to transportation and start times. As a result, it constitutes an informative case study for

our optimization models.
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1.1. Related Work

School assignment. The problem of assigning students to schools has received significant

attention in the operations research literature. In the 1970s, the push to desegregate US

public schools motivated Franklin and Koenigsberg (1973) and Liggett (1973) to redraw

the attendance boundaries of schools with optimization algorithms assigning census blocks

to particular schools. The objective is minimizing distance (or squared distance, out of

compactness concerns) subject to capacity and racial balance constraints. More recently,

Caro et al. (2004) propose an optimization model for creating attendance zones for schools,

explicitly modeling various desirable properties including contiguity, grade-balance, and

distance from a previous solution.

A related line of work concerns assigning students to schools while simultaneously decid-

ing which schools to open and close (capacitated median problem). Teixeira and Antunes

(2008) propose a model to decide which grades should be hosted at each school, while Araya

et al. (2012) develop a multiobjective model to select schools in rural Chile. Delmelle et al.

(2014) formulate a multi-period problem to model the impact of long-term demographic

changes on enrollment. In this work, we refer to the related areas of opening and closing

schools and assigning students as classroom operations.

School transportation. School bus routing is perhaps the most active area of research in

school operations (see the reviews by Park and Kim (2010) and Ellegood et al. (2020) for

details). The goal is to construct bus routes which transport students from their home (or

potentially a nearby bus stop) to school in the morning and back in the afternoon, while

satisying a number of individual and system-wide constraints. The problem is typically

decomposed into three steps: bus stop assignment (clustering nearby students at a single

pickup and dropoff location), bus routing (connecting stops into routes), and bus scheduling

(assigning routes or sequences of routes to a bus).

Of these three subproblems, stop assignment is considered straightforward in isolation;

Schittekat et al. (2013) develop a local search approach to jointly assign students to stops

and connect stops into routes. Given stops, the bus routing problem is essentially a capaci-

tated vehicle routing problem, with bounds on vehicle capacity and maximum riding time.

The Clarke-Wright savings heuristic is a popular starting point, and Levin and Boyles

(2016) show that it can already outperform the manual approaches used by many school
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districts. High-quality solutions can be obtained quickly with vehicle routing heuristics

(Cordeau et al. 2007) or metaheuristics (Chen et al. 2015).

Once routes have been computed, the school bus scheduling problem aims to assign each

bus a route or succession of routes to serve, such that the bus reaches each school either

at a specified time or within a specified time window. Swersey and Ballard (1984) propose

a discrete-time integer optimization formulation of the problem. Desrosiers et al. (1986)

introduce an additional degree of freedom by allowing school start times to vary along with

bus schedules, and adopt an alternating minimization approach. Fügenschuh (2009) applies

a branch-and-cut approach to a slightly different setting which allows transfers between

buses. Most recently, Zeng et al. (2022) propose an integer programming reformulation

of the school bus scheduling and start time selection problem under a constant route

transition time assumption, which naturally yields a randomized rounding algorithm with

guaranteed bounds.

While necessary for tractability, it is clear that considering the routing and scheduling

subproblems separately can lead to suboptimality. A few approaches seek to bridge the

divide. Braca et al. (1997) develop a constructive heuristic that inserts stops (and the

corresponding school, if necessary) into a route until no more stops can be inserted. Shafahi

et al. (2018) take into account other schools’ locations and bell times when constructing

routes for each school. Bertsimas et al. (2019) develop an approach called bi-objective

routing decomposition (BiRD) in which several different sets of routes are constructed

for each route, and the scheduling step jointly selects the best set for each school while

constructing bus schedules.

Because school bus routing research is largely driven by practice, many different prob-

lem variations exist in the literature, including inter-bus transfers (Fügenschuh 2009) and

mixed loads, i.e., co-riders from different schools (Park et al. 2012). Some works focus on

transportation for special education, which can be characterized by longer routes (Russell

and Morrel 1986) and heterogeneous fleets (Caceres et al. 2019). In addition, because school

bus routes are generally fixed and cannot adjust to traffic, school bus routing problems are

generally treated as deterministic. Recent work by Caceres et al. (2017) explores a setting

in which student demand and travel times are uncertain.

Finally, we note that despite the abundance of work on both school assignment and

school transportation, few studies examine the two in tandem. Mandujano et al. (2012)
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design a two-step assignment-routing procedure, assuming a hub-spoke structure on routes.

Meanwhile, Kamali et al. (2013) consider an optimization formulation of the school assign-

ment problem, followed by a greedy routing heuristic. The approach scales to instances

with up to three schools and four buses.

From optimization to policy. Policy decisions made by school administrators can have

far-reaching implications, and can thus benefit from analytical support. For instance, Elle-

good et al. (2015) develop a continuous approximation model to quantify the benefits of

mixed-load routing in different school districts. Another avenue to impact decision-making

is the creation of accessible software support tools (Caro et al. 2004, Chu et al. 2020).

Addressing challenges in school operations also means wrestling with significant external-

ities. For instance, adjusting school start times raises questions of equity between families

(Banerjee and Smilowitz 2019), as well as public health questions. Indeed, a growing body

of medical literature links too-early school starts for teenagers to health and academic

issues (Carrell et al. 2011). On the assignment side, the last two decades have seen the

emergence of school choice programs, in which districts allow families to express preferences

between many schools beyond the nearest ones. These programs are the direct result of a

vast literature in mechanism design (Abdulkadiroglu and Sönmez 2003), in which the aim

is to fairly and efficiently allocate students to schools based on their preferences. Though

beyond the scope of this paper, the impact of choice mechanisms on school operations, par-

ticularly transportation, is an exciting direction for operations research. As evidence, we

cite the work of Shi (2015), in which optimization is used to decide which schools families

can rank based on location.

We note that this paper does not explicitly model externalities such as family preferences

in the school operations problems we consider—however, our models allow us to simulate

many scenarios and quantify the costs and benefits of various policies, providing a tool for

policy makers to weigh operational considerations with external concerns. The potential

impact of this direction of research is significant: though which school students attend

has a disproportionate impact on districts’ transportation spending, in most cases decision

making is not coordinated across these two areas. Yet the potential benefits are huge,

particularly in school districts with generous choice programs that give the students many

school options in which to enroll (e.g., under “districtwide” choice programs, students could

attend any school in the district). The current reality of school choice programs means
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Figure 1 Taxonomy of problems in school operations.
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Note. Problems are listed from left to right in the order they are typically considered. Light horizontal bars indicate

the problems considered (jointly or separately) by selected studies.

that a purely optimization-based approach is unlikely to be directly and fully implemented

by a district. However, it can serve as a baseline against which to evaluate current policies

and provide insights to inform new policies.

1.2. Contributions

This paper presents an operations research approach to three problems in school operations,

developing a methodology to assign students to schools, construct school bus routes, and

schedule school start times. Our approach is:

• Comprehensive: given a list of schools and students, and some problem parameters,

our method produces a solution in which each student is assigned to a school and a par-

ticular bus route, school start times are scheduled, and each bus is assigned an itinerary

consisting of one or more consecutive routes. While the problem is initially divided into

three main subproblems, we introduce a post-improvement heuristic which jointly opti-

mizes assignment, routing and scheduling, improving the desired objective by up to 20%.

To our knowledge, no existing study even considers, let alone optimizes, all these problems

simultaneously (see Fig. 1).

• Flexible: our models can accommodate a variety of practical constraints, particularly

on the transportation side. For instance, we can accommodate a heterogeneous bus fleet,
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with restricted student-bus compatibility, as well as time-varying travel times. Our models

also allow us to consider multiple objectives, including school and classroom costs on

the assignment side, and fleet size, driving distance and driving time on the routing side

(contrasting with the focus on total number of buses in most other studies).

• Scalable: our approach relies on a three-step decomposition of the overall problem.

Students are assigned to school in the first step, bus routes are constructed for each school

at the second step, and school start times and bus schedules are jointly selected in the third

step. On a case study of medium size (10 schools, 3500 students), we can find high-quality

solutions in under an hour.

We highlight two novel algorithms of independent interest in our decomposition

approach. The first jointly targets the school bus scheduling and start time selection prob-

lems, building on earlier work by Bertsimas et al. (2019). As in that work, we enforce a

single arrival time (instead of an arrival time window) for all routes of a particular school

and formulate the school bus scheduling problem usign a network flow formulation. We

extend the earlier work in three important ways: first, we modify the flow graph substan-

tially so that school bus schedules and school start and end times can be optimized jointly

instead of separately; second, we show how the formulation can admit more complex objec-

tives than the number of buses, including time and distance; third, we provide a theoretical

analysis of the core underlying assumption (collapsed time windows) in a simplified but

realistic setting, finding in particular that this assumption comes at no cost when start

and end times are organized into two groups, or “tiers”.

The second novel algorithm is a post-improvement heuristic which jointly optimizes

school assignment, school bus routing, and school bus scheduling. Like most improve-

ment heuristics, it works by partially destroying the input school bus schedule, then re-

assembling a solution with lower total cost. A key innovation is that the re-assembling step

can modify not only which bus students ride, but also which schools they attend. Crucially

for tractability, we are able to formulate the re-assembling step as an integer network flow

problem, which allows greater flexibility in defining local search neighborhoods. Evaluated

on synthetic data, the method yields an improvement of up to 20% over the decomposition

approach.

We also evaluate our integrated optimization approach (or “pipeline”) on a real-world

case study from Boston Public Schools, a yearly five-week summer program targeted at stu-

dents with special needs. Our model is flexible enough to accommodate a range of problem
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specifics (e.g. how to account for students in wheelchairs during school bus routing). We

show that our optimization method for assignment alone could reduce total program cost

by up to 8%. We then demonstrate our models’ ability to describe and explore policy trade-

offs, including reducing student travel times, restricting building utilization, and changing

the set of start times schools can choose from. Finally, we describe how a simplified version

of our model was used by the district to plan for the summer of 2021.

We detail our optimization algorithms in Section 2. In Section 3, we study the implica-

tions of arrival time windows in school bus scheduling and start time selection. We evaluate

the performance of the assignment-routing post-improvement heuristic in Section 4, and

explore the implications of our models on data from Boston Public Schools in Section 5.

2. An optimization pipeline

In this section, we describe the methodology we use to solve the operational challenges

faced by a school district, as motivated by the ESY program at Boston Public Schools.

We first give an overview of the problem and our decomposition approach. We then detail

our approach to school assignment, followed by school bus routing, before discussing our

algorithm for school bus scheduling and start time selection.

2.1. Problem overview

The decisions faced by the school district are straightforward: assign each student a school,

assign each school a start time, construct bus routes covering each school’s students, and

decide which bus will serve which route. In doing this, the district has two principal objec-

tives in mind. The first is financial cost. The second is student travel time. These objectives

are partially aligned—a bus driving less can reduce student travel time while also saving

fuel costs. However, the fixed cost associated with operating a school bus means that it is

financially advantageous to operate buses closer to capacity.

The problem described here is too large to formulate directly. In the school bus routing

literature, decompositions are often used to manage tractability. We employ a similar

approach here, decomposing the problem into three main stages, each of which we formulate

as an optimization problem. We first describe individual algorithms for each stage, then

introduce a post-improvement heuristic that combines assignment, routing, and scheduling.

We provide a notation guide for the reader in Table 1.
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Table 1 Summary of notation. Note that notation follows morning conventions (see Section 2.3 for details)

Symbol Description

School assignment
S Set of all schools that can host students
I Set of all students that must be assigned a school
P Set of all programs (classroom types) with which students can be associated
Ps Subset of programs that can be held at school s∈ S
Ip Subset of students associated with program p
Kp Maximum number of students in a classroom for program type p
Ys Maximum number of classrooms available at school s
Bus stop assignment
Is Subset of students assigned to school s

Îs Subset of students assigned to school s who need to be assigned a stop
L Set of all allowed bus stop locations
Li Subset of stop locations within walking distance for student i∈ I
Bus routing
d Bus depot
Hs Set of active bus stops for school s∈ S
H Set of all active bus stops
Ih Subset of students assigned to stop h∈H
tdriveα,β Driving time from location α to location β
tstoph Pickup time at stop h∈H
tschools Dropoff time at school s∈ S
B Set of bus types
Qb Maximum number of seats on bus of type b
Rs Set of all feasible routes for school s∈ S
Br Set of bus types that can serve route r
θrh Travel time from stop h to school along route r
Bus scheduling and start time selection
Ts Set of start times allowed for school s∈ S
RAM

s (t) Set of morning routes for school s if starting at time t∈ Ts

RPM
s (t) Set of afternoon routes for school s if starting at time t∈ Ts

tservicer Total time to serve route r, from first pickup to last dropoff
V Vertices of the bus scheduling graph
E Edges of the bus scheduling graph

2.2. School assignment

Formulation. Let S designate the set of schools, and let I designate the set of students.

Each student is associated with a program p. Let P designate the set of all programs, and

let Ps designate the set of programs that can be held at school s. We also designate as

Ip ⊆I the subset of students associated with program p. Each program p is assigned with

a classroom capacity Kp, and each school s has a maximum number of classrooms Ys.

We define the binary decision variable xis, which takes the value 1 if student i∈ I attends

school s ∈ S, and 0, otherwise. We also define the nonnegative integer variables yps that

indicate the number of classrooms staffed at school s ∈ S for program p ∈ P. Then the
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basic formulation of the assignment problem can be written as:

min
∑
s∈S

∑
i∈I

disxis + γ
∑
s∈S

∑
p∈P

yps (1a)

s.t.
∑
s∈S

xis = 1 ∀i∈ I (1b)∑
i∈Ip

xis ≤Kpyps ∀p∈P, s∈ S (1c)

∑
p∈P

yps ≤ Ys ∀s∈ S (1d)

xis ∈ {0,1} ∀s∈ S, i∈ I (1e)

yps ∈Z+ ∀s∈ S, p∈P. (1f)

Constraint (1b) ensures that each student is assigned to exactly one school. Con-

straint (1c) relates the number of students of program p assigned to school s to the number

of classrooms that need to be staffed for program p at school s. Constraint (1d) imposes a

limit on the number of classrooms that can be staffed in each school building. The objective

(1a) trades off the total student-to-school distance with the cost of staffing each classroom

via the hyperparameter γ. Ideally, we would replace the first term in the objective with the

school bus routing cost corresponding to the assigment represented by the x variables, but

representing this function explicitly requires modeling the downstream routing problem in

its entirety, which is intractable.

Formulation (1) models the key decisions of the school assignment problem. It can be

extended to take into account other desired problem specifics.

• Student and program restrictions: Some schools may not be able to host certain

programs due to a lack of appropriate facilities or equipment. Additionally, students may

not be allowed to attend any school (for example, bathroom fixtures at elementary schools

cannot be used by high school students). In both cases, the relevant y or x variables can

be fixed to 0.

• Student cohorts: A particular subset of students Ī ⊆ I (e.g., siblings) may need to

be assigned to the same school. In this case, we can pick one student i0 ∈ Ī, and impose

xi0s = xis for each school s and each student i∈ Ī.

• Program-specific classroom costs: Each program may have slightly different

staffing and facility needs, leading to a different contribution to the objective. We can
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easily modify the objective to include weights µp capturing the relative cost of classrooms

for different programs.

School selection. Sometimes, the set of schools to open is not fixed. For a summer pro-

gram like BPS’s Extended School Year, the district must sometimes decide which school

sites to utilize, turning the assignment problem into a facility location problem Teixeira

and Antunes (2008). We can adjust formulation (1) to take into account this additional

decision, by introducing a new binary variable zs for each school s, taking the value 1 if

school s is open, and 0 otherwise, and adding the constraints:

xis ≤ zs ∀s∈ S, i∈ I (2a)∑
p∈P

yps ≤ Yszs ∀s∈ S. (2b)

Note that the inclusion of the latter constraint renders constraint (1d) superfluous.

Even if the set of schools is fixed, the district may decide to open some schools, but

only for a subset of programs or students—for example, opting to open a school for only

elementary school, middle school or high school students (denoted as IES,IMS,IHS ⊆ I).

In this case, we can define binary decision variables zESs (respectively zMS
s , zHS

s ), taking the

value 1 if school s is open for elementary school (respectively middle school, high school)

students, and 0 otherwise. We then add the constraints

xis ≤ zESs ∀i∈ IES, (2c)

(respectively for IMS and IHS), allowing us to introduce rules restricting the co-location of

different age groups in the same building, e.g.

zESs + zHS
s ≤ 1 ∀s∈ S. (2d)

We note that formulation (1) uses a weighted-sum-of-objectives technique to trade off

student-to-school distance with the number of classrooms. An almost equivalent method

to study this tradeoff is a goal programming approach, where we minimize the number

of classrooms (more generally, the total classroom cost) subject to the student-to-school

distance not exceeding a parametric threshold D.

Regardless of the modeling choices made at the assignment step, the output is always

the same: a set of students Is ⊆I assigned to each school s∈ S.
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2.3. Bus routing

Once students are assigned to a school, they need to be provided a means to get there.

Each student that is eligible for transportation must be assigned a bus stop, then these

stops must be visited in sequence by a bus. A common assumption in the school bus

literature, which usually holds in practice, is that buses can only carry students from the

same school. This fact suggests a natural decomposition of the school bus routing problem:

at the routing step, stops for each school are connected into routes; at the scheduling step,

each bus is assigned a set of routes for different schools, to be served in succession. The

advantage of this decomposition is that each school’s routing problem can be solved in

isolation. Each routing subproblem is much smaller than the overall school bus routing

problem, and these subproblems can easily be solved in parallel.

From students to stops. While the assignment step of our pipeline deals with students,

school bus routing considers stops, which are associated with one or more students. As a

preprocessing step to the routing problem, students need to be assigned to bus stops. One

approach is simply to consider that each student will be picked up outside their home,

i.e., there is a one-to-one mapping between students and stops. In practice, many students

with special needs are assigned their own bus stop. However, treating every student in this

way can be inefficient, especially when many students live close by.

We therefore adopt the following approach to map students to stops. For students who

need their own stop, called door-to-door students, we simply create a stop at their address

and assign them to it—note that the stop may still have multiple students, e.g., siblings

living at the same address. For the remaining students, denoted Îs ⊂ Is, we consider the

set L of stop locations historically used by the district. Each student i ∈ Îs is associated

with a subset Li ⊆L of locations within walking distance of their home. Then we solve the

following hitting set problem for each school to minimize the number of stops:

min
∑
ℓ∈L

vℓ (3a)

s.t.
∑
ℓ∈Li

wiℓ = 1 ∀i∈ Îs (3b)

wiℓ ≤ vℓ ∀i∈ Îs, ℓ∈Li (3c)

vℓ ∈ {0,1} ∀ℓ∈L (3d)

wiℓ ∈ {0,1} ∀i∈ Îs, ℓ∈Li. (3e)
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The binary decision variable wiℓ takes the value 1 if student i is assigned to location ℓ,

and 0 otherwise, while the binary decision variable vℓ indicates whether location ℓ has any

assigned students. The objective (3a) is to minimize the number of locations used, while

constraint (3b) enforces that each student is assigned exactly one stop and constraint (3c)

ensures that location ℓ is marked as used if any student is assigned to it. At the end of

this preprocessing step, we obtain a set of stops Hs for each school s∈ S. Each stop h∈Hs

is associated with a single location, and with a subset of the students assigned to school

s, which we denote Ih ⊆ Is in a slight abuse of notation. We write the set of all stops as

H=∪s∈SHs.

From stops to routes. The key outcome of the bus routing subproblem is the creation of

sequences of stops called routes, or sometimes trips. We first focus on the morning routing

problem, in which students are picked up at home and dropped off at school. Formally, we

define a route r as a vector of |r| stops; each route may contain a different number of stops,

and must terminate at the school it serves (which is not included in the list of stops). The

k-th stop in a route r is denoted as hk(r), and in another slight abuse of notation, the set

of stops covered by route r is denoted as Hr = {h∈H : ∃k ∈ {1, . . . , |r|}, hk(r) = h} ⊆Hs.

For a particular school s∈ S, we first assume that the start time of each school s is fixed,

and that all routes must arrive at school at the same time. The bus routing problem then

becomes a variant of the capacitated vehicle routing problem, where the total number of

students on each route is bounded by the bus capacity, and each route’s length is bounded

by the maximum riding time, a hard constraint determined by the district.

For any two locations α,β ∈ S ∪H∪{d}, where d designates the (assumed unique) bus

depot, we define tdriveα,β as the time necessary to drive from α to β. For simplicity, we assume

this time is constant, but our models are flexible to driving times varying based on time

of day. We further define tstoph as the time necessary to pick students up at stop h ∈ H,

and tschools as the time necessary to drop students off at school s ∈ S. We note that in the

afternoon, students are picked up from school and dropped off at home, but we use the

morning conventions in conceptualizing travel times. Calling T the maximum time that

students can spend on the bus, a route r for school s is time-feasible if it verifies

|r|−1∑
k=1

(
tdrivehk(r),hk+1(r)

+ tstophk+1(r)

)
+ tdriveh|r|(r),s

≤ T, (4a)
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and capacity-feasible if it verifies ∑
h∈Hr

|Ih| ≤Q, (4b)

where Q designates the number of seats on the bus. Note that we assume here that all

buses are identical. If the fleet comprises several vehicles, we define B as the set of bus

types, and assume all buses of the same type have the same capacity Qb. A route r can

then be associated with a set of comptible bus types Br = {b ∈ B|
∑

h∈Hr
|Ih| ≤Qb}, and

we say r is capacity-feasible if Br ̸= ∅, i.e., if there is at least one bus type that can serve

route r.

Given the set of stops Hs, we call Rs the (possibly very large) set of all feasible routes

for school s. In another slight abuse of notation, we further denote the set of all routes

visiting stop h ∈Hs as Rh. We can then write the bus routing problem using a set cover

formulation:

min
∑
r∈Rs

crur (5a)

s.t.
∑
r∈Rh

ur ≥ 1 ∀h∈Hs (5b)

ur ∈ {0,1} ∀r ∈Rs. (5c)

The parameter cr designates the cost associated with route r, and the binary decision

variable ur takes the value 1 if route r is selected, and 0 otherwise. Constraint (5b) ensures

that the set of routes selected visits every stop.

Following Bertsimas et al. (2019), we define the cost of a route as

cr = λ+
∑
h∈Hr

|Ih|θrh, (6)

where θrh designates the travel time from stop h to the school on trip r, i.e., if h= hk(r),

we can write

θrh =

|r|−1∑
j=k

(
tdrivehj(r),hj+1(r)

+ tstophj+1(r)

)
+ tdriveh|r|(r),s

.

The parameter λ trades off the number of buses with the total student travel time.

Formulation (5) is simple to state, but difficult to solve, mostly because the set of feasible

routes Rs is potentially very large. Bertsimas et al. (2019) overcome this challenge by

solving problem (5) over a heuristically generated restricted set of routes R̄s ⊂Rs, with



Bertsimas and Delarue: Policy Analytics in Public School Operations 15

|R̄s| ≪ |Rs|. We adopt a different approach, common in vehicle routing settings, in which

we generate a greedy solution, then improve it using local search. An initial solution is

generated using a randomized greedy heuristic, then improved using a specialized variant

of k-OPT. Given a set of routes represented as a directed graph over stops and the school,

we delete k edges, yielding a set of route fragments that may or may not include the school.

We then find the minimum-cost way to recombine these fragments into routes, as detailed

in Algorithm 1 in Appendix A.

Throughout this section, we have described the routing problem from the morning per-

spective, in which students are picked up at home and dropped off at school. However, as

previously discussed, routes must also be constructed in the afternoon, picking up students

at school and dropping them off at home. Fortunately, the bus routing subproblem in the

morning is a mirror image of the bus routing subproblem in the afternoon, and both can

be solved in the same way. For example, given a morning route r, where h1(r) is the first

stop visited, and h|r|(r) the last stop visited before reaching the school, we can obtain an

afternoon route by reversing the order of stops, so that h|r|(r) is the first stop visited after

leaving school, and h1(r) is the last stop visited. Feasibility with respect to bus capacity

remains unchanged, and time-feasibility now means verifying

tdrives,h|r|(r)
+

|r|−1∑
k=1

(
tdrivehk+1(r),hk(r)

+ tstophk+1(r)

)
≤ T. (7)

Notice that expression (7) can be obtained from expression (4a) by applying the one-to-

one mapping tdriveα,β → tdriveβ,α . Though the routes for the morning and afternoon may differ,

because driving times are not necessarily symmetric and may depend on time of day,

performing this substitution allows us to consider the afternoon problem using the method-

ology developed above for the morning problem.

2.4. Bus scheduling and start time selection

The methods provided in the previous section allow us to construct routes for a particular

school at a particular time. Two consequential decisions remain: the first is to determine

which routes will be served in succession by the same bus, both in the morning and in the

afternoon; the second is to select each school’s start time.
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Integer network flow formulation. We propose to make these decisions jointly. For each

school, let Ts designate the set of possible start times, and let RAM
s (t) (respectively RPM

s (t))

designate the set of routes associated for school s for start time t ∈ Ts in the morning

(respectively afternoon). Note that if we assume morning driving conditions (travel times,

etc.) are the same at times t1 and t2, then we can have RAM
s (t1) =RAM

s (t2), but our model

does not rely on this assumption. We note that we write the school associated with route

r as sr.

To solve the scheduling and start time selection problem, we consider the following

network flow formulation. We first assume for simplicity that all buses in the fleet are

identical (single bus type), and originate from a single bus depot d. Two morning routes

can be served by the same bus if there is enough time for the bus to serve the first route,

drop off students at school, then travel to the beginning of the second route, and serve

the second route before the scheduled arrival time at school. More formally, we say that

r1 ∈ RAM
s1

(t1) and r2 ∈ RAM
s2

(t2) are (t1, t2)-compatible, denoted as (t1, r1)⋊⋉ (t2, r2), if and

only if

t1+ tdrives1,h1(r2)
+ tservicer2

+ tschools2
≤ t2,

where tservicer is the total time required to serve a route r, given in the morning by

tservicer = tstoph1(k)
+

|r|−1∑
k=1

(
tdrivehk(r),hk+1(r)

+ tstophk+1(r)

)
+ tdriveh|r|(r),s

.

Correspondingly, we say that r1 ∈RPM
s1

(t1) and r2 ∈RPM
s2

(t2) are (t1, t2)-compatible if and

only if

t1+ tschools1
+ tservicer1

+ tdriveh1(r1),s2
≤ t2.

Then we construct a directed graph G= (V,E). The vertex set can be written as V =

Vdepot∪Vroutes, where Vdepot contains exactly two nodes, which we label vAM and vPM, repre-

senting the depot at the beginning of the morning, and at the beginning of the afternoon.

The remaining vertices are defined as Vroutes =∪a∈{AM,PM}Va with

Va =
⋃
s∈S

{
(t, r) | t∈ Ts, r ∈Ra

s(t)
}
.

In other words, we create one node per route, for each possible start time and school, both

in the morning and afternoon. We then define the edge set as

E = Edepot→route ∪Eroute→depot ∪Eroute→route ∪Edepot→depot,
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where

Edepot→route = {(vAM, v)|v ∈ VAM}∪ {(vPM, v)|v ∈ VPM}, (8a)

Eroute→depot = {(v, vPM)|v ∈ VAM}∪ {(v, vAM)|v ∈ VPM}, (8b)

Edepot→depot = {(vAM, vPM), (vPM, vAM)}, (8c)

Eroute→route = {(v := (t, r), v′ := (t′, r′))|(t, r)⋊⋉ (t′, r′)}. (8d)

In other words, we include an edge connecting the depot to and from every route

(Equations (8a) and (8b)), edges between the morning and afternoon depot nodes (Equa-

tion (8c)), and an edge between every pair of compatible routes, i.e., routes that can be

served by the same bus (Equation (8d)). For a given vertex v, we denote incoming edges

as Ein(v)⊆E , and outgoing edges as Eout(v)⊆E .

Scheduling buses and selecting start times can then be formulated as an integer network

flow problem on the graph G. We associate each edge (v, v′)∈ E with a nonnegative integer

flow variable fv,v′; for two route nodes v = (t, r) and v′ = (t′, r′), fv,v′ takes the value 1 if

r and r′ are . Additionally, we define binary decision variables gs,t for each school s and

potential start time t ∈ Ts, taking the value 1 if school s is assigned start time t, and 0

otherwise. The problem can then be formulated as follows:

min
∑

(v,v′)∈E

Cv,v′fv,v′ (9a)

s.t.
∑

(v′,v)∈Ein(v)

fv′,v =
∑

(v,v′)∈Eout(v)

fv,v′ ∀v ∈ V (9b)

∑
(v′,v)∈Ein(v)

fv′,v = gsr,t ∀v := (t, r)∈ VAM (9c)

∑
(v′,v)∈Ein(v)

fv′,v = gsr,t ∀v := (t, r)∈ VPM (9d)

∑
t∈Ts

gs,t = 1 ∀s∈ S (9e)

gs,t ∈ {0,1} ∀s∈ S, t∈ Ts (9f)

fv,v′ ∈Z≥0 ∀(v, v′)∈ E . (9g)

Constraint (9b) enforces flow conservation at every node in the network. Constraints (9c)

in the morning and (9d) in the afternoon force the flow through a node to equal one if the
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start time associated with the node is selected, and 0 otherwise. Finally, constraint (9e)

enforces that each school is assigned exactly one start time. The objective (9a) assigns

a cost Cv,v′ to each selected edge, and can therefore encompass many different potential

costs. For instance, the total number of buses in use can be minimized by setting Cv,v′ = 1

if v= vAM, and 0 otherwise. The total driving time can be minimized by defining costs for

morning routes as

Cv,v′ =


tdrived,h1(r′)

+ tservicer′ + tschoolsr′
if v= vAM, v

′ = (t′, r′)∈ VAM,

t′− t if v= (t, r), v′ = (t′, r′)∈ VAM, (v, v
′)∈ Eroute→route

tdrivesr,d
if v= (t, r)∈ VAM, v

′ = vPM,

and similarly for afternoon routes. The total driving distance can be minimized with a

similar definition of edge costs.

When school districts choose start times, they may consider many external considera-

tions, such as the opinions of families who are not eligible for transportation. Formula-

tion (9) can be adjusted to take such external factors into account, either by restricting the

set of allowed start times Ts for school s, or by augmenting the objective with an additional

term
∑

s∈S
∑

t∈Tsms,tgs,t, where ms,t designates the cost of assigning time t to school s.

Bus types and school scenarios. The network flow formulation presented above assumes

that all buses are of the same type. This assumption was introduced for clarity, but it is

unrealistic in practice. We now show how to adjust formulation (9) to take this fact into

account.

As described in Section 2.3, it is more realistic to consider that the school bus fleet is

heterogenous, with a set of bus types denoted as B, and that each route can be served by a

subset of bus types Br. In this case, we modify the scheduling graph G= (V,E) as follows:
• Instead of a single depot node for the morning and afternoon, we create one such node

for each bus type, i.e., V =∪b∈B{vbAM, v
b
PM}.

• Instead of a single node for each potential start time t and route r, we create one node

per bus type that can serve route r, i.e.

Va =
⋃
s∈S

{
(t, r, b) | t∈ Ts, r ∈Ra

s(t), b∈Br
}
.

• The edge set E is constructed in the same way, but only nodes associated with the

same bus type b can be connected.
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For each set of nodes associated with a single time t and route r, denoted as Vt,r =

{(t, r, b)|b∈Br}, we modify constraints (9c) and (9d) as follows:

∑
v∈Vt,r

∑
(v′,v)∈Ein(v)

fv′,v = gs,t ∀s∈ S, t∈ Ts, r ∈RAM
s (t), (10a)

∑
v∈Vt,r

∑
(v′,v)∈Ein(v)

fv′,v = gs,t ∀s∈ S, t∈ Ts, r ∈RPM
s (t). (10b)

These updated constraints enforce that the flow through all nodes associated with a

particular time and route is 1 if that time is selected, and 0 otherwise. The particular node

(t, r, b) traversed by a unit of flow indicates which bus type b∈Br is assigned to route r.

Finally, we notice that the decomposition of the school bus routing problem into routing

and scheduling subproblems may lead to suboptimality. Indeed, it is not only of interest to

find optimized routes for each school, but also to find routes that can readily be connected

at the scheduling stage. A technique called bi-objective routing decomposition (BiRD)

was introduced by Bertsimas et al. (2019), in which not one, but several sets of routes

are generated for each school (for example, a set of long routes, medium routes and short

routes).

In this case, instead of one set of morning routes for each school and time RAM
s (t), we are

given n sets of morning routes {RAM,j
s (t)}nj=1, obtained for example by choosing n values

for the parameter λ in (6). We create the scheduling graph G as before, with one node

per time, route pair in each of the n provided route sets. We then modify formulation (9)

to include selection variables ωAM
s,j,t (respectively ω

PM
s,j ), taking the value 1 if the j-th set of

routes is selected in the morning (respectively afternoon) for school s at time t.

We then replace constraints (9c) and (9d) with the following,

∑
(v′,v)∈Ein(v)

fv′,v = ωAM
s,j,t ∀s∈ S, t∈ Ts, r ∈RAM,j

s (t),1≤ j ≤ n (11a)

∑
(v′,v)∈Ein(v)

fv′,v = ωPM
s,j,t ∀s∈ S, t∈ Ts, r ∈RPM,j

s (t),1≤ j ≤ n (11b)

n∑
j=1

ωAM
s,j,t = gs,t ∀s∈ S, t∈ Ts,1≤ j ≤ n (11c)

n∑
j=1

ωPM
s,j,t = gs,t ∀s∈ S, t∈ Ts,1≤ j ≤ n, (11d)
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where constraints (11a) and (11b) enforce that selecting the j-th route set RAM,j
s (t) for

school s at time t means selecting each route r ∈RAM,j
s (t), and constraints (11c) and (11d)

ensure that a route set for school s is only selected at a particular time t if school s does

indeed start at time t.

2.5. Joint assignment and routing

So far, our decomposition-based approach to school operations has treated school assign-

ment and routing as separate steps. While there is already value in simply considering

these related optimization problems together to expose interplay between their various

objectives, from an optimization perspective solving them separately is likely to result in

suboptimal solutions. At the same time, a key advantage of the decomposition approach

is its tractability. In this section, we discuss a post-improvement heuristic to jointly adjust

assignment and routing, starting from a solution produced by the decomposition approach

described in the previous sections. Similarly to the bus scheduling and start time selection

solution approach, the heuristic involves solving an integer network flow problem at each

step. The crucial distinction is that we allow “fragments” of routes (and correspondingly,

the students they serve) to be assigned to another school if it improves overall cost. Because

student assignments must remain consistent across the morning and afternoon, we further

assume that the afternoon routes for each school are an exact reversal of the morning

routes (though they may have different travel times due to varying traffic conditions). Such

“mirroring” of routes is common in practice as it provides a more consistent transportation

experience for students.

This post-improvement heuristic is an iterative algorithm, with each iteration consists

of three steps. At the first step, we randomly select a subset of individual school routes.

For each route, we then randomly select a stop, and split the route into two fragments,

the first containing all the stops preceding and including the selected stop, and the second

containing all the subsequent stops and the school. Note that the randomly selected stop

may be the last one in the route, in which case the second fragment will be functionally

empty (only contains the school). For school s, we denote by F cplt
s the set of route fragments

for school s that contain the school (“complete” fragments), and by F icplt
s the set of route

fragments for school s that do not contain the school s (“incomplete” fragments). Note
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that deleting the early part of a route only decreases occupancy and travel time, so each

route fragment in F cplt
s is actually a feasible route for school s (hence referred to as a

“complete” fragment).

Given these route fragments, we then construct a directed flow graph G′ = (V ′,E ′) over

the route fragments. In the interest of notational simplicity, we assume that (a) all buses

of are of the same type, (b) start times ts for each school remain fixed, (c) the set of

possible start times T is the same for all schools. The approach can easily be modified to

remove any or all of these restrictions. We also omit the “prime” modifiers on the graph,

with the understanding that the graph described in this section is distinct from the one

presented in the previous section. We describe the graph by specifying the vertices, edges,

and edge cost function. The vertex set can be written as V = Vdepot ∪ Vschools ∪ Vfragments,

where Vdepot = {vAM, vPM} contains the two nodes representing the bus depot in the morning

and afternoon, and Vschools = {vs,a}s∈S,a∈{AM,PM} contains two nodes per school (morning

and afternoon). The remaining vertices are defined as Vfragments = ∪s∈S,a∈{AM,PM}Vs,a
fragments,

with

Vs,a
fragments = {(f, a) | f ∈F

cplt
s }∪ {(t, f, a,ω) | t∈ T , f ∈F icplt

s , ω ∈ {0,1}}.

In other words, we create one node for each complete fragment in the morning and after-

noon. For each incomplete fragment, we create two nodes (indexed by ω) in the morning

and afternoon, for each possible start time t. Nodes with ω = 1 (resp. 0) are called ter-

minal (resp. nonterminal). Intuitively, terminal nodes can only have incoming edges from

the depot (new bus), while nonterminal nodes can only have incoming edges from other

schools (re-used bus). For ease of notation, we denote by Vcplt
s,a the set of nodes associated

with complete fragments for school s, and V icplt
s,a,t,ω the set of terminal or nonterminal nodes

associated with incomplete fragments for school s at time t. Let fv denote the fragment

associated with node v.

With these vertices, we can then define the edge set for the morning nodes (with the

understanding that the afternoon part of the graph is a mirror image). The structure of the

network is similar to the one presented in the previous section, with the key difference that

nodes associated with incomplete route fragments can be connected to nodes associated

with any school, not simply the fragment’s original school. This mechanism allows route

recombination across schools, which modifies the underlying student-to-school assignment
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to improve the routing objective. In turn, it requires the creation of nodes associated with

incomplete route fragments, as well as nodes associated with schools (since an incomplete

route fragment could connect directly to a school to create a new route).

In the previous section, edges could only be created between pairs of routes if they

were time-compatible. The addition of school nodes and incomplete fragments means time-

compatibility means time-compatibility must be evaluated differently across different node

pairs. As before, we write that a school s∈ S is time-compatible with a complete route frag-

ment f ∈F cplt
s′ , denoted as s⋊⋉ f , if and only if ts+t

drive
s,h1(f)

+tservicef +tschools′ ≤ ts′. Additionally,
we write that an incomplete route fragment f ∈F icplt

s is compatible with a complete route

fragment f ′ ∈ F cplt
s′ , denoted as f ⋊⋉ f ′ in a slight abuse of notation, if and only if (i) the

total number of students carried on both fragments does not exceed the bus capacity, and

(ii) the total length of the newly formed route tservicef + tdriveh|f |(f),h1(f ′)+ t
service
f ′ does not exceed

the maximum route time T . We then write that an incomplete route fragment f ∈ F icplt
s

is time-compatible with a school s′, denoted by f ⋊⋉ s′, if and only if the total length of

the newly created route tservicef + tdriveh|f |(f),s′
does not exceed the maximum route length T .

Checking time-compatibility from schools to incomplete fragments requires information

from more than two nodes in the graph, so this constraint cannot be imposed directly on

the edges.

We can therefore write the (morning) edge set as

EAM = {(vAM, v) | v ∈ Vcplt
s,AM ∪V

icplt
s,AM,t,1, s∈ S, t∈ T } (12a)

∪{(v, vPM) | v ∈ Vschools} (12b)

∪{(vAM, vPM), (vPM, vPM)} (12c)

∪{(v, vs,AM) | v ∈ Vcplt
s,AM, s∈ S} (12d)

∪{(v, vs′,AM) | v ∈ V icplt
s,AM,t,ω, ω ∈ {0,1}, s∈ S, s

′ ∈ S, t= ts′, fv ⋊⋉ s} (12e)

∪{(v, v′) | v ∈ V icplt
s,AM,t,ω, v

′ ∈ Vcplt
s′,AM, ω ∈ {0,1}, s∈ S, s

′ ∈ S, t= ts′ , fv ⋊⋉ fv′} (12f)

∪{(vs,AM, v
′) | v′ ∈ Vcplt

s′,AM, s∈ S, s
′ ∈ S, s⋊⋉ fv′} (12g)

∪{(vs,AM, v
′) | v′ ∈ V icplt

s′,AM,t,0, s∈ S, s
′ ∈ S, ts < t}, (12h)

where we include an edge (12a) from the depot to each complete or terminal fragment; an

edge (12b) from each school to the depot; edges (12c) between the morning and afternoon

states of the depot; an edge (12d) from each complete fragment to the corresponding
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school; an edge (12e) from each incomplete fragment to each time-compatible school; an

edge (12f) from each incomplete fragment to each time-compatible complete fragment; an

edge (12g) from each school to each time-compatible complete fragment; and finally an

edge (12e) from each school to each incomplete fragment. The afternoon edges EPM form

a mirror image of the morning edges.

As in the previous section, we can then formulate the problem of reconnecting the route

fragments into a feasible bus schedule as a network flow problem, with key variable uv,v′

indicating the amount of flow from node v to node v′:

min
∑

(v,v′)∈E

C ′
v,v′uv,v′ (13a)

s.t.
∑

(v′,v)∈Ein(v)

uv′,v =
∑

(v,v′)∈Eout(v)

uv,v′ ∀v ∈ V (13b)

∑
(v′,v)∈Ein(v)

uv′,v = 1 ∀v ∈ Vcplt (13c)

∑
(v′,v)∈Ein(v)

uv′,v =mt,f,a,ω ∀v := (t, f, a,ω)∈ V icplt (13d)

∑
t∈T

ω∈{0,1}

mt,f,a,ω = 1 ∀f ∈F icplt, a∈ {AM,PM} (13e)

∑
v∈Vf,AM

v′∈Vf ′,AM

uv,v′ =
∑

w∈Vf,PM

w′∈Vf ′,PM

uw′,w ∀f ∈F icplt, f ′ ∈F cplt (13f)

∑
(v′,v)∈Ein(v)

τv′,vuv′,v +
∑

(v,v′)∈Eout(v)

τv,v′uv,v′ ≤ t− tv′ ∀v := (t, f, a,0)∈ V icplt (13g)

mt,f,a,ω ∈ {0,1} ∀v := (t, f, a,ω)∈ V icplt (13h)

uv,v′ ∈Z≥0 ∀(v, v′)∈ E , (13i)

where Vcplt = ∪s∈S,a∈{AM,PM}Vcplt
s,a designates the set of nodes associated with a complete

fragment, and analogously V icplt = ∪s∈S,a∈{AM,PM},t∈T ,ω∈{0,1}V icplt
s,a,t,ω designates the set of

nodes associated with an incomplete fragment. Additionally, Vf,a designates the set of ver-

tices associated with fragment f at time of day a. Finally, F icplt = ∪s∈SF icplt
s designates

the set of all incomplete fragments, and similarly F cplt =∪s∈SF cplt
s the set of all complete

fragments. For a school node v = vs, we denote by tv the start time ts of the associated

school.
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In addition to the flow variables uv,v′ , the binary variablesmt,f,a,ω ensure exactly one node

associated with an incomplete fragment is selected (constraint (13e)). Constraints (13b)–

(13d) impose flow conservation and make sure nodes associated with a fragment are visited

(analogous to constraints (9b)–(9d)).

Formulation (13) also introduces two significantly new constraints: first, (13f) ensures

that if two fragments are combined into a route in the morning, the same two fragments

must also be combined into a route in the afternoon. Combining a complete fragment

and an incomplete fragment may involve changing the school a student attends, and a

student cannot be dropped off at one school in the morning and picked up at another

in the afternoon. Second, constraint (13g) imposes time-feasibility for bus itineraries that

visit a school and incomplete fragment in succession. In the morning, we can select

τv,v′ =



tdrives,h1(f)
+ tservicef , if v := vs ∈ Vschools, v′ := (t, f,AM,0)∈ V icplt,

tdriveh|f |(f),h1(f ′) + tservicef ′ + tschools′ , if v := (t, f,AM,0)∈ V icplt, v′ := (f ′,AM)∈ Vcplt
s′ ,

tdriveh|f |(f),s′
+ tschools′ , if v := (t, f,AM,0)∈ V icplt, v′ := vs′ ∈ Vschools,

0, otherwise,

to ensure that any constructed route involving an incomplete fragment preceded by a school

node with a start time t1 and followed by another school node or a complete fragment

with start time t2 will satisfy (t1, t2)-compatibility. It is because of this constraint that we

introduced the somewhat unintuitive duplication of incomplete fragments into “terminal”

and “nonterminal” nodes.

As with the previous network flow formulation, an advantage of this approach is the

ability to model multiple objectives. We describe examples of potential cost functions in

Appendix B.

3. Time windows and optimality gaps

The formulations presented in the previous section together form an optimization pipeline,

which allows a school district to explore new operational policies at the intersection of

assignment, transportation, and start times. We note that some of the assumptions we

make are more restrictive than those considered in the literature. In particular, some school

bus routing works consider a slightly more general setting, where routes need not arrive

at school at exactly the same time, but rather within a certain time window. We choose

instead to consider that all routes must arrive at the same time. In this section, we identify

a special case in which the two approaches are equivalent.
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3.1. Bus scheduling with time windows

The question of time windows has sparked some debate in the school bus routing literature.

Some approaches, such as those of Shafahi et al. (2018) and Bertsimas et al. (2019), favor

the assumption that all school bus routes for a particular school must arrive at the same

fixed “anchor time”. The advantage of this approach is that it is easy to reserve a time

buffer (of, say, 10 minutes) between the routes’ anchor time and the school’s start time, as

a simple, easily implementable way to account for delays caused by day-to-day variance in

traffic. Other authors, including Swersey and Ballard (1984) and Zeng et al. (2022) favor

time windows, citing an increased potential for connecting routes arising from this greater

flexibility. In practice, school districts may use either framework.

Consider a simplified version of the bus scheduling and start time selection problem

described in Section 2, in which we ignore afternoon routing, assume the route set Rs

for each school s does not depend on the school’s selected start time ts ∈ Ts, and reduce

the bus fleet to a single type of vehicle. For ease of notation, we refer to the collection of

all routes as R= ∪s∈SRs. As previously, we consider three potential objectives: the total

number of buses (denoted by z1), the total driving distance (denoted by z2), and the total

driving time (denoted by z3). Our general objective z is a convex combination of these

three possibilities.

Given the time window length ∆ts for each school s, implying that routes are allowed

to arrive at school within the interval [ts−∆ts, ts] for a start time of ts, we can formulate

the problem as follows:

min
t∈

∏
s∈S Ts

min
τ∈R|R|

w∈{0,1}|R|2

z := α1z1+α2z2+α3z3 (14a)

s.t.
∑
r′

wr′,r ≤ 1 ∀r ∈R (14b)∑
r′

wr,r′ ≤ 1 ∀r ∈R (14c)

τr′ ≥ τr +T (r, r′)−M(1−wr,r′) ∀r, r′ ∈R (14d)

ts−∆ts ≤ τr ≤ ts ∀s∈ S, r ∈Rs. (14e)

The discrete decision variable ts represents the selected start time for school s∈ S, while

the continuous decision variable τr designates the arrival time of route r ∈R. The binary
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decision variable wr,r′ takes the value 1 if route r′ is served immediately after route r by

the same bus, and 0 otherwise. Constraints (14b) and constraints (14c) enforce that a

route is immediately preceded or followed by at most one other route in a bus schedule.

We define T (r, r′) to be the total time necessary to travel from the end of route r to the

beginning of route r′, and then serve the entire route r′, meaning constraint (14d) ensures

that route r′ can only immediately follow route r if their respective arrival times are far

enough apart (time feasibility). Finally, constraint (14e) ensures that the arrival time for

each route occurs within the specified school time window.

We now write the objectives of interest as a function of our decision variables. Abusing

notation slightly, we define T (0, r) as the time necessary to travel from the depot to the

start of route r, then serve the entirety of route r, while T (r,0) indicates the time necessary

to travel from the end of route r to the depot. Analogously, we define the distances D(r, r′),

D(0, r) and D(r,0). As shorthand, we write T̄ (r) = T (0, r),
¯
T (r) = T (r,0), D̄(r) =D(0, r),

and
¯
D(r) =D(r,0). We can then write the following:

z1 :=
∑
r∈R

(
1−

∑
r′∈R

wr,r′

)
= |R|−

∑
r,r′∈R

wr,r′ , (15a)

z2 :=
∑
r∈R

D̄(r)+
¯
D(r)+

∑
r,r′

wr,r′
(
D(r, r′)− D̄(r′)−

¯
D(r)

)
, (15b)

z3 :=
∑
r∈R

T̄ (r)+
¯
T (r)+

∑
r,r′

wr,r′
(
τr′ − τr− T̄ (r′)−

¯
T (r)

)
. (15c)

Note that these expressions offer a clear interpretation: for each pair of routes r and

r′ served in succession, the total number of buses decreases by one. Similarly, the total

travel distance changes by D(r, r′)− D̄(r′)−
¯
D(r) (which is negative if distances follow the

triangle inequality), by eliminating a visit to the depot between routes r and r′. Finally,

the total bus service time changes by τr′ − τr− T̄ (r′)−
¯
T (r), replacing driving time to and

from the depot with the difference between the arrival times of the consecutive routes r

and r′.

Notice that z3 is nonlinear, as it involves a product of decision variables. This difficulty

can be overcome by introducing (many!) additional variables to model the product between

wr,r′ and τr, but this remains an unwelcome feature of the bus scheduling problem with time

windows. We note that using formulation (14), a particular bus scheduling and start time

selection problem is uniquely determined by the tuple ({Rs,Ts,∆ts}s∈S , T (·, ·),D(·, ·),α).
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Leaving aside the O(|Ts|) variables required to model the discrete start time ts (e.g., as

ts =
∑

t∈Ts tgs,t, with gs,t ∈ {0,1}), formulation (14) comprises O(|R|2) discrete variables

and O(|R|) continuous variables, as well as O(|R|2) constraints. Fixing route arrival times,

i.e., imposing ∆ts = 0 for each school s∈ S, eliminates all continuous variables in the inner

problem, as well as constraints of type (14e). It is then easy to write constraint (14d) as:

ts′wr,r′ ≥ (ts +T (r, r′))wr,r′ ∀s, s′ ∈ S, r ∈Rs, r
′ ∈Rs′, (16a)

or equivalently

∑
t′∈Ts′

t′gs′,t′wr,r′ ≥
∑
t∈Ts

tgs,twr,r′ +T (r, r′)wr,r′ ∀s, s′ ∈ S, r ∈Rs, r
′ ∈Rs′, (16b)

∑
t∈Ts

gs,t = 1 ∀s∈ S, (16c)

which can be expressed as a pure binary optimization problem if we introduce new variables

to represent the product of w and g. The resulting problem has O
(
(
∑

s∈S |Rs||Ts|)2
)

variables, and O (|R|2|T |2) variables if Ts = T ∀s∈ S (same possible times for all schools).

This is a larger number of variables, but a much stronger formulation due to the elimination

of the big-M constraints. Furthermore, the objective z3 can now be written as:

z3 =
∑
r∈R

T̄ (r)+
¯
T (r)+

∑
r,r′

wr,r′

∑
t∈Ts′

tgs′,t−
∑
t∈Ts

tgs,t− T̄ (r′)−
¯
T (r)

 ,

where s is the school assocaited with route r and s′ the school associated with route r′.

Note that after introducing new product variables of w and g, z3 becomes linear. Indeed,

formulation (9) was obtained via this method, in the more general case of a heterogeneous

fleet, and after pruning pairs of routes that cannot possibly be served in succession.

Thus, by eliminating time windows, we can go from a weak, nonlinear mixed-integer

formulation to a strong, linear pure-integer formulation. Furthermore, it is clear that any

schedule computed assuming with ∆ts = 0 will remain feasible (but perhaps suboptimal)

for larger values of ∆ts. We now consider a special case of practical interest, in which this

suboptimality can be eliminated.
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3.2. Two-tier problems

In practice, many school district schedule start times in tiers, meaning that schools can

only start at a few possible times. For example, Boston Public Schools operates a three-tier

schedule during the normal school year: start times are either 7:30, 8:30 or 9:30. In the

summer, the ESY program operates a two-tier schedule, with schools starting at either

8:00 or 9:30 in the summer of 2019. Two-tier systems (and their perhaps less common

three-tier cousins) are valued for their simplicity, particularly in the case when school bus

routing is a manual or semi-manual process.

Definition 1. Consider the problem of scheduling school buses and selecting start times

for a set of schools S. The problem is two-tier if it verifies the following conditions: (1)

only two start times are allowed for each school, i.e. Ts = {t1, t2},∀s ∈ S (t1 < t2 WLOG);

(2) all bus routes for school s must arrive within the time window [ts −∆ts, ts]; (3) the

early and late time windows do not overlap, i.e., t1 < t2−∆t; (4) the largest time window

is shorter than the shortest route, in other words, no bus can serve two consecutive routes

for the same tier.

Two-tier scheduling problems are highly structured—a key reason they are often used in

practice. We next prove that given a two-tier scheduling problem with time windows, we

can always reduce it to an equivalent two-tier scheduling problem without time windows.

Proposition 1. Consider a two-tier bus scheduling and start time selection problem

(P1) := ({Rs,Ts := {t1, t2},{∆ts}s∈S , T (·, ·),D(·, ·),α). We can define a related problem

(P2) := ({Rs,{t1 −∆ts, t2},0}s∈S , T (·, ·),D(·, ·),α), with the modified objective ẑ = α1z1 +

α2z2+α3ẑ3, where

ẑ3 =
∑
r∈R

T̄ (r)+
¯
T (r)+

∑
r,r′∈R

wr,r′
(
max[t2−∆ts′ − t1, T (r, r′)]− T̄ (r′)−

¯
T (r)

)
,

such that (P1) and (P2) have the same optimal objective, and there is a polynomial-time

algorithm to compute an optimal solution of (P1) given an optimal solution of (P2).

Proposition 1 means that in a two-tier scheduling problem, we can fix route arrival times

at the earliest part of the first tier and the latest part of the second tier, and still find

the optimal solution of the original scheduling problem with time windows. The intuition

behind this result is that spreading out routes further than necessary does not affect the
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total number of buses, or the total distance traveled, and only affects the total driving

time in a way that can be computed in polynomial time (by solving a linear program). We

defer all proofs to Appendix C. Note that while the result assumes that all buses are of

the same size, the proof does not require it. Indeed, it is possible to show the same result

for an arbitrary fleet composition, though at the cost of unwieldy notation.

3.3. Three-tier problems

The ability to do away with time windows entirely is an unexpectedly strong result

which bodes well for a school bus scheduling approach without time windows, such as the

one presented in the previous section. However, it is natural to wonder whether the same

reasoning holds in a setting with more tiers - for example, larger school districts may have

three or even four tiers. In the case of a three-tier system, we provide a simple counter-

example to show Proposition 1 does not hold, then describe a worst-case upper bound on

the cost of removing time windows. We first define the notion of a three-tier system.

Definition 2. Consider the problem of scheduling school buses and selecting start times

for a set of schools S. The problem is three-tier if it verifies the following conditions: (1)

only three start times are allowed for each school, i.e. Ts = {t1, t2, t3},∀s ∈ S (t1 < t2 < t3

WLOG); (2) all bus routes for school s must arrive within the time window [ts−∆ts, ts];

(3) the time windows for each tier do not overlap, i.e., t1 < t2−∆t < t2 < t3−∆t; (4) the

largest time window is shorter than the shortest route, in other words, no bus can serve

two consecutive routes for the same tier; (5) any pair of routes where the first arrives at

a school within the time window [t1, t1 −∆t] and the second arrives at a school within

the time window [t3, t3−∆t] can be served by the same bus (skipping a tier implies time

feasibility).

We note that a three-tier system is defined analogouly to a two-tier system, with the

additional condition that routes in the first and third tier can always be served consecu-

tively. This is a practical assumption: a typical three tier-system may have separations of

up to an hour between tiers, so there is considerable time for buses to connect the earliest

and latest routes. Indeed, the main value of a three-tier system is the ability to re-use

buses more than twice.
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Figure 2 Three-tier counter-example for Proposition 1
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9:308:307:30
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Note. This diagram presents the optimal solution to a bus scheduling and start time problem with three schools,

each with two routes. The transition times and route lengths are also indicated. Collapsing time windows imposes

that routes 3 and 4 must arrive at school 2 at the same time, which will make one of the two three-route itineraries

infeasible.

Remark 1. In a three-tier problem, collapsing school arrival time windows to a single

point may deteriorate the objective function. Consider the simple setting where α1 = 1 and

α2 = α3 = 0 (the only objective is to minimize the number of buses). Consider a problem

instance with 3 schools, possible start times of 7:30, 8:30, and 9:30, and two routes per

school. We describe the optimal solution of the bus scheduling and start time problem with

time windows in Figure 2, indicating both the length of each route and the length of the

optimal transitions. It is straightforward to see that collapsing the time window for the

middle school forces routes 3 and 4 to start at the same time, which will always make at

least one three-route itinerary (and potentially both) infeasible, requiring the addition of

at least one additional bus and deteriorating the optimal objective (assuming the lengths

of route 1 and route 2, along with long transition times from the first school to the routes

of the third school, make a start time rotation between schools impossible).

Therefore, in a three-tier problem, we cannot expect a result as strong as Proposition

1 to hold. However, we can still bound the objective deterioration from collapsing time

windows.

Proposition 2. Consider a three-tier two-tier bus scheduling and start time selec-

tion problem (P ) := ({Rs,Ts := {t1, t2, t3},{∆t}s∈S , T (·, ·),D(·, ·),α = (1,0,0)), with opti-

mal objective z∗. Denote the collapsed version of the problem (P ′) := ({Rs,Ts := {t1 −
∆t, t2, t3},{∆t}s∈S , T (·, ·),D(·, ·),α= (1,0,0)), with optimal objective z′∗. Then

z′∗ ≤ z∗+N ∗
2,3−N ∗

1 ≤ 2z∗,
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where N ∗
2,3 is the optimal (under z∗) number of buses serving consecutive routes for schools

in the second and third tiers, and N ∗
1 is the optimal number of buses only serving a route

for a first-tier school.

The result in Proposition 2 is considerably weaker than Proposition 1. However, it holds

in general, with minimal assumptions on the underlying school bus routes. Additional

computation can yield tighter bounds. For example, the term N ∗
2,3−N ∗

1 can be tightened

to min(N ∗
2,3−N ∗

1 ,N
∗
1,2−N ∗

3 ) (second term defined analogously to the first) by solving the

collapsed problem twice, once with a second-tier bell time of t2 and once with a second-

tier bell time of t2 −∆t. In practical settings, the bound may be significantly improved.

For example, collapsing the second-tier bell times may not preclude the connection of a

second-tier route r with a third-tier route r′, for example if t3− t2 ≥ T (r, r′). And changing

school start times may allow further bus re-use.

The results presented in this section provide motivation for an approach without time

windows, such as the one presented in this paper. Indeed, as we saw in Section 2, removing

time windows yields a formulation with a network flow structure, both tractable and flexible

enough to include heterogeneous fleet modeling as well as multiple time-dependent routing

options for each school.

4. Numerical experiments

The post-improvement heuristic for joint assignment, routing and scheduling presented

in Section 2.5 is a novel contribution of this work, and in this section we evaluate its

performance numerically.

We consider a realistic synthetic setting, using public data from the Boston Public

Schools Transportation Challenge (Boston Public Schools 2017). The dataset includes

22,420 students, assigned to 134 schools. For the purposes of our analysis, we ignore the

assignment of students to schools, and assume any student can be assigned to any school.

We also randomly subsample two smaller datasets: a “Small” dataset with 5,000 students

and 20 schools, and a “Medium” dataset with 10,000 students and 50 schools. The full

dataset is referred to as the “Large” dataset. We consider a fleet with a single bus type

with capacity 70. We define travel times using Euclidean distance and a fixed speed of 8

miles per hour.
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We assume each school is surrounded by a “walk zone” of radius 1 mile. Students inside

the walk zone of their assigned school do not receive transportation service, except for stu-

dents designated as “door-to-door”, who receive transportation regardless of their distance

to school. We assume bus stops cannot accommodate more than 30 students, and that vis-

iting a bus stop requires 60s, plus 5s per student. As required by joint assignment-routing,

we “mirror” morning and afternoon routes. For each of the three problem instance, we

consider two potential objectives: the first is simply the total number of buses; the second

is a weighted combination of the number of buses, total travel time, and total travel dis-

tance, with weights determined using parameters from the ESY case study in the following

section.

Figure 3 shows the performance of the post-improvement heuristic for the three problem

instances and two choices of objective. When the objective is purely the number of buses

(as in Figure 3a), the algorithm struggles to make improvements, with no improvement

recorded for the small instance, and about 5% improvement for the medium and large

instance. When the objective is a weighted combination of buses, travel time, and distance,

the heuristic provides considerably more value, with improvements of about 7% on the

smaller instance and 20% on the larger instance. On the larger instance, the algorithm is

able to efficiently recombine routes from different schools to visit a single school, reducing

the number of schools that require transporting students (there could still be students in

the walk zone of these schools).

We conjecture that the worse performance on the number of buses objective can be

explained by the discrete nature of the objective, which leads to many solutions with exactly

the same objective, which makes it harder for the algorithm to find locally-improving

solutions. Figure 4a supports this theory, as it depicts the number of buses at each iteration,

in the cases when the objective is being optimized is not the number of buses but instead

the weighted objective. We find that including secondary objectives considerably improves

the performance on the primary objective, not only in relative but also in absolute terms.

For all three instances, the absolute number of buses after 50 iterations is lower when

optimizing the weighted objective than when optimizing the number of buses directly.

We also seek to understand the impact of the neighborhood size (determined by the

number of single-routes “broken up” by deleting a single edge between stops) in our local

improvement heuristic. In Figure 4b, we study the effect of neighborhood size on runtime
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Figure 3 Performance of post-improvement heuristic
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(b) Minimizing weighted objective

Note. Performance is evaluated over 50 iterations; each iteration breaks up 40 single-school routes and optimally

re-assembles the fragments. The heuristic performs much better on larger problems; when minimizing the number of

buses, it is more prone to getting “stuck” in local minima than when minimizing the weighted objective.

Figure 4 Secondary objectives and convergence
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(b) Convergence and neighborhood size

Note. The left figure plots the number of buses as a function of the iteration number, when the objective being

optimized is a weighted sum of number of buses, travel time, and distance. We observe significant improvement

compared to Figure 3a, which optimizes the number of buses directly, suggesting the local improvement heuristic

works better on a less discrete objective. On the right, we describe solution quality on the large problem instance

over 50 iterations, for different numbers of single-school routes broken up at each iteration (“deleted edges” denoting

the neighborhood size). The X axis depicts the cumulative runtime of the heuristic: smaller neighborhoods make less

progress per iteration, while larger neighborhoods require more time per step.

and solution quality on the large instance with the weighted objective. We observe a clear

tradeoff between smaller neighborhoods, which allow for more iterations with less progress
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per iteration, and larger neighborhoods, which make more progress per iteration but require

solving a larger network flow problem at each step. Overall, the results suggest that the

algorithm performs well, particularly on larger instances where there is more opportunity

for optimization.

5. Case study

We now evaluate our optimization models on data from the Extended School Year (ESY)

program at Boston Public Schools.

5.1. Problem setup

In the summer of 2019, the ESY program at Boston Public Schools enrolled 3,758 students

across 15 different programs. These programs were held at 11 different schools: one high

school, one middle school, seven elementary schools, and two all-grade sites. These school

buildings vary in size, with 5 classrooms in the smallest one, and 93 in the biggest.

In our study, staffing a school for five weeks has a fixed administrative staffing cost of

$21,000 (including a site coordinator, an administrative assistant, and a nurse), plus a cost

per classroom. Classrooms for the ABA (Applied Behavior Analysis) program are staffed

by one teacher, incurring a cost of $7,000, while all other classrooms are staffed by one

teacher and one paraprofessional educator, incurring a cost of $10,500. At the assignment

step, we define the student-to-school distance dis as the Euclidean distance between student

i and school s. We refer to the costs incurred by the district to operate and staff schools

and classrooms as educational costs or classroom costs.

Students are eligible for bus transportation if their Individualized Education Program

(IEP) requires it or if they live further than a specified distance (as the crow flies) from

school (1 mile for elementary school students, 1.5 miles for middle school students, and 2

miles for high school students). The majority of students are eligible for transportation,

and most eligible students require door-to-door service, meaning they must be picked up

at home and cannot be clustered into bus stops. The remaining students must be assigned

a stop from one of 1,800 pre-approved locations in the city, as long as they need not walk

more than 600m (approximately a third of a mile). Students who do not live close to any

bus stop are treated as door-to-door students.

The Boston Public Schools fleet comports four types of buses: in our model, a full bus

can hold up to 65 students, a half bus can hold up to 30, a mini bus can hold up to 10, and



Bertsimas and Delarue: Policy Analytics in Public School Operations 35

a wheelchair bus can hold up to 12 students, including up to three students in wheelchairs.

Following Boston Public Schools’ transportation assumptions, we assume that visiting a

bus stop requires 60s, plus 5s per student. Each student in a wheelchair requires another

240s (4 min) to pick up or drop off, giving time to operate the specialized wheelchair lift

and securing the wheelchair inside the bus. We note that students in wheelchairs can only

be picked up by wheelchair buses.

We develop a more realistic travel time model than one solely based on latitude and

longitude. Using data from OpenStreetMap, we create a network of the city of Boston

where each node represents an intersection, and each edge represents a road. The complete

network comprises 188,002 nodes and 453,703 edges. We then project each bus stop and

school to the nearest road in our network, and compute the driving time between any two

locations by assuming buses travel along the shortest path at a constant speed of 10 miles

per hour — a conservative estimate of the average school bus velocity.

Finally, we describe the structure of our transportation costs. In contrast to many school

bus applications, the objective is not simply to minimize the number of buses. Indeed,

because the ESY program is held over a short period of time in the summer, the fixed cost

of owning and maintaining a bus is considered sunk, as is the total cost of driver benefits

such as health insurance. Instead, the cost is driven by driver hours and distance driven.

The hourly salary of a driver is $27, and each mile driven incurs a fuel and parts cost of

$0.84. There remains a fixed cost associated with each bus, because drivers must conduct

a 15-minute vehicle inspection at the beginning and end of each shift in both the morning

and afternoon. The ESY program runs for 25 days (5 weeks) so we multiply the computed

daily costs by 25 to obtain total transportation costs for the whole program. We refer to

the costs incurred by the district to operate school buses as transportation costs or bus

costs.

All computations are realized in Julia (Bezanson et al. 2017), with optimization problems

formulated using JuMP (Dunning et al. 2017) and solved using Gurobi (Gurobi Optimiza-

tion, Inc. 2016). Computational experiments were executed in parallel on a computing

server, with a single-core machine (8GB RAM) tasked with solving the assignment, routing

and scheduling problems for each parameter configuration. Computations in this section

do not make use of the post-improvement heuristic described in Section 2.5.
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5.2. ESY-specific modeling

Modeling attendance. A particularity of the ESY program is that it is not required.

Students’ IEP gives them access to the program, but families may decide that this time

is better spent in other activities. Students may also attend sporadically for a variety of

reasons. The district must therefore make plans keeping in mind that students are not all

equally likely to attend the program.

We adjust the model in the following way. For each student i, we model i’s attendance

on any given day using a Bernoulli random variable Ai. Let ρi = P(Ai = 1). We then

replace numbers of students in capacity constraints with expected numbers. Specifically,

constraint (1d) in the assignment stage becomes:

EA

∑
i∈Ip

Aixis

=
∑
i∈Ip

ρixis ≤Kpyps∀p∈P.

Similarly, the bus capacity constraint (4b) in the routing problem becomes

EA

[∑
h∈Hr

∑
i∈Ih

Ai

]
=
∑
h∈Hr

∑
i∈Ih

ρi ≤Q,

In practice, students may request transportation service, but may choose to travel to

the school using their own means, so we could refine the model to include a second trans-

portation usage probability ρ′i < ρi. This is a conservative approach: even though we only

reserve a small amount of space on a bus for a student with high no-show likelihood, we

still plan for a bus to travel to and from this student’s location, which is potentially waste-

ful. The no-show problem has attracted more interest in recent years, with Caceres et al.

(2017) proposing a more flexible approach to manage demand stochasticity. However, for

special education students, districts may not have much leeway, as they are often legally

required to provide transportation whether or not the student chooses to use it. Resolving

the tension between system efficiency and legal requirements is a potentially interesting

policy problem beyond the scope of this paper.

We note that our probability weighting approach is not robust. We employ it because it

closely matches Boston Public Schools’ regular process. In practice, uncertainty is handled

in two ways: first, the attendance probabilities tend to be overestimated, so as to plan for

a larger number of students than the expected value. Second, the classroom capacities Kc



Bertsimas and Delarue: Policy Analytics in Public School Operations 37

can be adjusted in an ad hoc way on days when student attendance is much higher than

expected. Incorporating a data-driven attendance model would be an interesting extension

of this work.

Reducing site occupancy. Another particularity of the ESY problem is that it occurs

over the summer. As a result, there are more restrictions on building usage, as facilities

staff perform much-needed renovations on schol buildings. The ESY program handles these

restrictions by penalizing the use of classrooms that would bring building usage over 50%

utilization in terms of a number of classrooms.

We can model this effect in formulation (1) by separating each school’s classrooms into

“regular-use” and “extended-use” groups of equal size, adjusting the meaning of the deci-

sion variables yps to indicate the number of regular-use classrooms opened for program p at

school s, and introducing additional variables y′ps to indicate the number of extended-use

classrooms opened for program p at school s. We then replace constraint (1d) with∑
p∈P

yps ≤
⌈
Ys

2

⌉
∀s∈ S, (17a)

∑
p∈P

yps + y′ps ≤ Ys ∀s∈ S, (17b)

and add the term
∑

s∈S
∑

p∈Ps
γ′y′ps to the objective (1a), where the parameter γ′ > γ

quantifies the cost of using extended-use classrooms. Alternatively, we can use a goal-

programming approach and restrict the number of extended-use classrooms below a certain

threshold, e.g.
∑

s∈S
∑

p∈Ps
y′ps ≤ Yextended.

Cohorts. We also incorporate a cohort constraint, which keeps certain groups of stu-

dents (e.g. students in certain programs attending the same school during the school year)

together when assigning them to ESY sites. The objective of this constraint is to minimize

changes in the student experience.

5.3. The edge of optimization

Our first goal in this case study is to quantify the benefit of using an optimization-based

solution in operationalizing the ESY program at Boston Public Schools. To this end, we

solve the assignment step (goal programming version) for a range of values of the student-

to-school distance thresholdD, exploring the Pareto frontier between distance to school and
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Figure 5 Study of the core assignment tradeoff between transportation and classroom costs.
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Note. As classroom costs decrease, distance to school increases, slowly at first, then sharply. Correspondingly, an

increase in distance leads to an increase in total routing cost. In both cases, the points represent individual solutions,

with the line indicating a cubic smoothing spline through the points.

total classroom cost. Because the problem is discrete and there are often many assignments

with the same total number of classrooms (and because the optimality gaps relative to the

best solver lower bound we obtain are typically in the 1-2% range at the 10-minute limit),

not every solution produced by varying D is Pareto-optimal. We eliminate dominated

solutions as a postprocessing step, and obtain the Pareto frontier in Figure 5a.

Surprisingly, it is possible to substantially reduce the number of classrooms in use with

little to no impact on the average student’s distance to school. The true metric of interest,

however, is not distance, but total transportation costs incurred by the district. Therefore,

for each generated assignment, we solve the school bus routing and start time selection

problem using the optimization pipeline described in Section 2. We generate routes using

400 iterations of 2-OPT, for two distinct values of the routing tradeoff parameter λ (5 ·104,
106) in both the morning and afternoon. We then solve the scheduling and start time

selection problem with a 10-minute time limit, typically attaining an optimality gap of 1%

for the subproblem. The resulting tradeoff curve between routing and classroom costs is

shown in Figure 5b.

Figure 5 suggests that student-to-school distance is a reasonable proxy for routing costs

at the assignment step (further corroborated by the correlation of 0.91 between total

routing cost and student-to-school distance). However, we note that solutions with very

similar student-to-school distance can vary in the resulting routing costs. This variation can
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be explained both by the imperfection of distance as a proxy for routing cost, and by the

imperfection of our routing optimization process, including both our use of a randomized

local search heuristic to construct routes, suboptimality resulting from decomposition, and

the ∼ 1% optimality gap when scheduling buses.

As a comparison point for our optimization-based solutions, we can compute the class-

room and routing costs for the actual student-to-school assignment used by the ESY 2019

program. We find that this assignment leads to classroom costs of $2.69 million and an aver-

age student to school distance of 3.93 km, significantly less efficient than the optimization-

based solutions. Using the same routing parameters, we estimate a total routing cost of

$1.42 million, for a total estimated cost of $4.11 million. In contrast, the minimum-cost

optimization-based solution from Figure 5 has a total cost of $3.77 million, an 8% improve-

ment over the ground-truth baseline. We note that in all solutions, we capped the number

of extended-use classrooms at 45—the number of extended-use classrooms utilized in the

ground-truth baseline.

5.4. Policy tradeoffs

Beyond producing actionable, efficient solutions, our optimization model can be used to

inform decision-makers of the tradeoffs of various policies.

Extended-use classrooms. For instance, it is of interest to understand the impact of

restricting the usage of extended-use classrooms described in Section 5.2. Keeping site

utilization below 50% is a soft constraint for the district, which can be re-evaluated based

on the cost implications. Fixing the number of used extended-use classrooms to different

values, we can use our model to understand how classroom and bus costs are affected. We

again adopt a goal-programming approach for the assignment stage, minimizing classroom

cost subject to constraints on the student-to-school distance and the number of extended-

use classrooms available.

Results are presented in Figure 6, using the routing parameters defined in Section 5.1.

As expected, restricting the number of extended-use classrooms affects overall efficiency:

leading to a rise in student-to-school distance (and correspondingly, bus costs) for fixed

classroom costs. Furthermore, fewer extended-use classrooms also imply a more constrained

problem, with a narrower range of potential solutions. Indeed, the problem becomes infea-

sible if fewer than 10 extended-use classrooms are available.
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Figure 6 Tradeoff between transportation and classroom costs for various restrictions on extended-use classrooms.

●●
●

●

3.45

3.50

3.55

3.60

2.46 2.50 2.54 2.58
Classroom costs ($ million)

M
ea

n 
di

st
an

ce
 to

 s
ch

oo
l (

km
)

Extended−use
classroom count

●

14
20
30
45

(a) Pareto frontier between student-to-

school distance and total classroom cost

●

●

●

●

1.27

1.30

1.33

1.36

2.46 2.50 2.54 2.58
Classroom costs ($ million)

B
us

 c
os

ts
 (

$ 
m

ill
io

n)

Extended−use
classroom count

●

14
20
30
45

(b) Relationship between total routing cost
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Note. As fewer extended-use classrooms are available, the frontier between classroom and transportation costs shifts

up and to the right. Each point represents an individual solution.

Figure 7 Tradeoff curve between average student travel time and total bus costs.
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Student travel times. Another objective which presents an interesting tradeoff with cost

is student travel time. In general, a solution in which students spend less time on the bus is

preferable, particularly for special education students who may have medical needs which

preclude long bus trips. We can vary the parameter λ at the route generation stage of our

algorithm to create routes with different average travel times. We choose values ranging

between 3 · 103 and 3 · 104.
Figure 7 shows the tradeoff between transportation costs and average student travel

time, as computed by the routing part of our optimization algorithm. As expected, as

travel time decreases, total bus costs increase. In keeping with the results in Figure 5, as
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classroom costs decrease, total routing costs increase, and the efficiency frontier between

travel time and bus costs shifts up. The routing solution computed by our algorithm for

the actual 2019 assignment has a routing cost of $1.42 million, for an average student travel

time exceeding 35 minutes. Figure 7 thus suggests that our optimization approach could

allow the district to simultaneously reduce classroom costs by 4% and average student

travel time by up to 5 minutes.

Start time tiers. In 2019, Boston Public Schools decided that ESY schools would start

at either 8:00 AM or 9:30 AM. The 90-minute separation between tiers contrasted with

the 60-minute separation between tiers during the normal school year, and was designed

to increase connectivity between bus routes for different schools, and thereby reduce trans-

portation costs. A benefit of our analytics engine is that it can compute transportation cost

estimates for different start time options and evaluate a good value for the gap between

early and late schools.

We present this analysis in Figure 8. In particular, Figure 8a shows the effect of the

gap, in minutes, between the earlier allowed start time (fixed at 8:00 AM) and the later

allowed start time for each school, for different solutions with different classroom costs.

In all cases, a small gap means routes are hard to connect between schools. As the gap

increases, connecting routes becomes substantially easier and routing costs decrease. If the

gap keeps increasing, however, buses must drive farther or remain idle longer on deadhead

trips connecting routes, and transportation costs start increasing once more. Interestingly,

in the summer of 2018, the district had a 120-minute gap between ESY start times. Our

results suggest that both 90 minutes and 120 minutes are approximately equivalent in

terms of routing cost, though this result is obviously heavily dependent on our travel time

assumptions.

One technique introduced in Section 2 to keep costs down is the introduction of multiple

sets of routes (for example, with varying emphasis on the number of routes versus the

average student travel time) for each school, and allowing the optimal set of routes to be

selected at the scheduling step. In Figure 8b, we show the improvement resulting from

using four sets of routes per school over using just one set of routes per school (only one

route set per school is used in Figure 8a). We see there is a small advantage from using

multiple route sets per schools, particularly when the gap between start times is between
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Figure 8 Effect of start time options on transportation cost.
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Note. For all three student-to-school assignments considered, the left panel shows there is a “sweet spot” for the gap

between early and late start times—too short and routes are hard to connect, too long and buses spend too much

time idle or on deadhead trips. The right panel shows there is a small edge from considering multiple sets of routes,

or scenarios, for each school. This edge is bigger when classroom costs are lower (and students are consequently a

bit further from school). We also notice that this edge is highest in the 60- to 90-minute window, just when we

start reaping the highest rewards from increased route connectivity. The solid line is not depicted on the right panel

because the scheduling problems were more difficult to solve with more route sets, leading to suboptimality.

60 and 90 minutes, a zone where each additional potential route connection can potentially

lead to a substantial cost reduction.

5.5. Implementation

Motivated by the case study in this section, Boston Public Schools decided to partially

implement the methods described in this paper to assign students to schools for the Sum-

mer 2021 Extended School Year program. For implementation, we produced a simplified

version of our optimization code, implemented in R, to be run by administrative staff at

the district. Development was driven by three major concerns: portability (ensuring the

code was simple enough to run with minimal software installations and prior knowledge),

flexibility (ensuring the models allowed the district to experiment with many proposals),

and tractability (producing a feasible solution in seconds using open-source tools).

In keeping with these priorities, we made the following simplifications: we formulated

only the school assignment problem to minimize average distance to school, and allowed
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Figure 9 Tradeoff curve between ESY 2021 scenarios.
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the practitioners to specify site and capacity constraints to explore multiple scenarios using

a goal programming approach, and allowed the computation of classroom costs after the

fact. Practitioners were able to explore many scenarios, and take into account additional

considerations such as idiosyncratic differences between functionally equivalent school sites.

For example, the district could directly compare two different assignment policies, one

which grouped 6th graders with K-5 students at elementary sites, and another which

grouped 6th graders in separate middle school sites. We present a summary of Pareto-

optimal solutions produced by the district in Figure 9.

Though this implementation falls short of using all the modeling tools outlined in this

paper, we believe it is a good example of the practical benefits of a holistic optimization

approach. Practitioners at Boston Public Schools responded positively to the flexibility

this tool provides in assessing assignment options with many tradeoffs.
6. Conclusion

In this paper, we provide a sequence of optimization algorithms to address key problems in

US public school operations. In particular, we develop a new network flow formulation for

the bus scheduling and start time selection subproblem that can accommodate problem

specifics such as a heterogeneous fleet and time-varying travel times. We apply our methods

in a case study with Boston Public Schools, yielding potential cost savings of up to 8%. We

further show that our methods allow policy makers to explore a variety of policy tradeoffs.
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Appendix A: Pseudocode of single-school routing heuristic

See Algorithm 1 below.

Appendix B: Modeling costs in the joint assignment-routing step

In Section 2.5, we presented a network flow-based heuristic to jointly optimize student-to-school

assignment and school bus routing and scheduling. The presented formulation is highly flexible

and can model diverse objectives. We describe examples in this appendix, focusing on the morning

case, with the understanding that the afternoon part of the graph is a mirror image of the morning.

Much as in the school bus routing and start time selection formulation, we can minimize the total

number of buses by setting C ′
v,v′ = 1 if v = vAM, and 0 otherwise. Additionally, we can minimize

total travel time by setting:

C ′
v,v′ =



tdrived,h1(f ′) + tservicef ′ + tschools′ , if v= vAM, v
′ ∈ Vcplt

s′ ,

tdrived,h1(f ′) + tservicef ′ , if v= vAM, v
′ ∈ V icplt,

tdrives,d , if v′ = vPM,

ts′ − ts, if v := vs ∈ Vschools, v′ ∈ Vcplt
s′ ,

t′− ts, if v := vs ∈ Vschools, v′ = (t′, f ′,AM,0)∈ V icplt

tdriveh|f |(f),h1(f ′) + tservicef ′ + tschools′ , if v := (t, f,AM,1)∈ V icplt, v′ := (f ′,AM)∈ Vcplt
s′ ,

tdriveh|f |(f),s′
+ tschools′ , if v := (t, f,AM,1)∈ V icplt, v′ := vs′ ∈ Vschools,

0, otherwise.

The cost function can be defined analogously for the afternoon part of the graph, and can be

adapted to minimize travel distance instead of travel time.
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Appendix C: Proofs

Proof of Proposition 1 We consider formulation (14) in the two-tier case. For each school s, let

the binary variable gs take the value 1 if school s starts at time t1, and 0 if school s starts at time

Algorithm 1 k-OPT local search heuristic for the school bus routing problem.
Input: a set of routes Rs, the number of edges to delete k, and the number of local search iterations
N . The output is an updated set of routes Rs with lower total cost. Our implementation of k-
OPT also allows reversing the direction of route fragments that do not contain a school at the
recombination step, but we omit this detail for clarity.

1: function k-OPT(Rs, k, N)
2: for i= 1 to N do
3: copt =

∑
r∈Rs

cr ▷ Initialize optimal cost
4: F ← FragmentRoutes(Rs, k) ▷ A route fragment is a tuple (h,ψ), where h is a vector of

stops, and ψ is a boolean indicating whether the fragment ends at school
5: for R̂s in PossibleRoutes(F) do
6: if

∑
r∈R̂s

cr ≤ copt then
7: Rs←R̂s; c

opt←
∑

r∈R̂s
cr

8: return Rs

9: function FragmentRoutes(Rs, k)
10: F ←∅
11: Sample a1, . . . , ak uniformly from

{
1,2, . . . ,

∑
r∈Rs

|r|
}

▷ Route breakpoints
12: ā← 0 ▷ Counter
13: for r ∈Rs do
14: i0← 0
15: for i= 1 to |r| do
16: ā← ā+1
17: if ā∈ {a1, . . . , ak} then
18: F ←F ∪{(h := (hi0+1(r), . . . , hi(r)),ψ := false)}
19: i0← i

20: F ←F ∪{(h := (hi0+1(r), . . . , h|r|(r)),ψ := true)} ▷ Remainder of route

21: return F
22: function NextFragments(F , f := (h,ψ))
23: if ψ= true then
24: return {(∅,true)} ▷ Empty fragment only contains school
25: else
26: return F\f ∪{(∅,true)} ▷ All other route fragments, including the empty one

27: function PossibleRoutes(F)
28: F := {f1, . . . , fn} ▷ Number the fragments for clarity (n= |F|)
29: Ps(R)←∅ ▷ Initialize set of route sets
30: for {fj1 , . . . , fjn} in NextFragments(F , f1) × . . .× NextFragments(F , fn) do
31: Consider the directed graph G= (V,E) with V =F ∪{(∅,true)} and E = {(fi, fji)}ni=1

32: if G is acyclic and the maximum in-degree over F = V \{(∅,true)} is 1 then
33: R̂s←∅ ▷ Initialize candidate route set
34: for every path (fℓ0 , . . . , fℓp) in G where fℓ0 has in-degree 0 and fℓp = (∅,true) do
35: Construct a route r by concatenating the stop lists hℓ0 , . . . ,hℓp in order

36: R̂s←R̂s ∪{r}
37: if every route r ∈ R̂s is feasible (capacity and maximum riding time) then
38: Ps(R)←Ps(R)∪ R̂s

39: return Ps(R)
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t2. Then we can formulate (P1) as

min
g∈{0,1}|S|

min
τ∈R|R|

w∈{0,1}|R|2

z (P1a)

s.t.
∑
r′

wr′,r ≤ 1 ∀r ∈R (P1b)∑
r′

wr,r′ ≤ 1 ∀r ∈R (P1c)

τr′ ≥ τr +T (r, r′)−M(1−wr,r′) ∀r, r′ ∈R (P1d)

t1gs + t2(1− gs)−∆ts ≤ τr ≤ t1gs + t2(1− gs) ∀s∈ S, r ∈Rs, (P1e)

where we recall that ts = t1gs + t2(1− gs), and (P2) as

min
g∈{0,1}|S|

min
w∈{0,1}|R|2

ẑ (P2a)

s.t.
∑
r′

wr′,r ≤ 1 ∀r ∈R (P2b)∑
r′

wr,r′ ≤ 1 ∀r ∈R (P2c)

(t1−∆ts′)gs′ + t2(1− gs′)≥

(t1−∆ts)gs + t2(1− gs)+T (r, r′)−M(1−wr,r′) ∀r, r′ ∈R. (P2d)

As a result of the two-tier property, if wr,r′ = 1, route r must be associated with an early school,

and route r′ with a late school, i.e., gs = 1 and gs′ = 0. Thus constraint (P2d) simplifies to

t2 ≥ t1−∆ts +T (r, r′)−M(1−wr,r′) ∀r, r′ ∈R. (P2e)

Let (g∗,w∗) (equivalently (t∗,w∗)) designate an optimal solution of (P2). Consider the opti-

mization problem (P3), obtained by fixing g to g∗ and w∗ to w in (P1):

min
τ∈R|R|

z (P3a)

s.t. τr′ ≥ τr +T (r, r′) if w∗
r,r′ = 1 (P3b)

t1g
∗
s + t2(1− g∗s)−∆ts ≤ τr ≤ t1g∗s + t2(1− g∗s) ∀s∈ S, r ∈Rs. (P3c)

We first show (P3) has at least one feasible solution, obtained by setting

τr =

{
t1−∆ts, ∀r ∈Rs, g

∗
s = 1;

t2, ∀r ∈Rs, g
∗
s = 0.

Clearly this choice of τ verifies constraint (P3c). Moreover, constraint (P2e) for each r, r′ such that

w∗
r,r′ = 1 implies t2 ≥ t1−∆ts+T (r, r

′), guaranteeing that our choice of τ verifies constraint (P3b).
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Since (P3) is trivially bounded, let us now denote by τ ∗ the optimal solution of (P3). We claim

that (g∗,w∗,τ ∗), with associated objective z∗, is optimal for (P1). Consider a feasible solution

(g†,w†,τ †) with objective z† < z∗. We first show that (g†,w†) is feasible for (P2). Constraints (P2b)

and (P2c) are trivially satisfied. Further, combining constraints (P1d) and (P1e) with the two-tier

property (w†
r,r′ = 1⇒ gs = 1, gs′ = 0), we obtain t2 ≥ t1 −∆ts + T (r, r′)−M(1− w†

r,r′), verifying

feasibility of (g†,w†) in (P2).

Applying the two-tier property one more time, we know that if w†
r,r′ = 1, then τ †r′ ≥ t2 −∆ts′

and τ †r ≤ t1, i.e. τ †r′ − τ †r ≥ t2 − ∆ts′ − t1. From feasibility, we also know that w†
r,r′ = 1 implies

τ †r′ − τ † ≥ T (r, r′). Thus, z
†
3 ≥ ẑ

†
3, implying z† ≥ ẑ†.

As a final step, we claim that for all pairs of routes r, r′ ∈R, w∗
r,r′ = 1 implies τ ∗r′− τ ∗r =max(t2−

∆ts′ − t1, T (r, r′)). Assume there exists a pair of routes r, r′ such that τ ∗r′ − τ ∗r >max(t2 −∆ts′ −

t1, T (r, r
′)). Consider first the case where t2 −∆ts′ − t1 > T (r, r′). Then either τ ∗r′ > t2 −∆ts′ , or

τ ∗r < t1. Let us assume the latter without loss of generality, and define ϵ > 0 such that τ ∗r + ϵ≤ t1.

By construction, we see that either τ ∗r or τ ∗r′ appear in exactly three constraints in (P3): one of

type (P3b), and two of type (P3c). It is thus easy to check that a new solution τ ∗∗ constructed

from τ ∗ by incrementing only τ ∗r by ϵ is feasible in (P3), and with a lower objective than τ ∗, a

contradiction. A similar argument can be made if t2−∆ts′ − t1 ≤ T (r, r′).

Since τ ∗r′ − τ ∗r =max(t2−∆ts′ − t1, T (r, r′)) for all pairs of routes r, r′ with w∗
r,r′ = 1, we conclude

that z∗3 = ẑ∗3 , thus z
∗ = ẑ∗. By optimality of (P2), we therefore have z∗ = ẑ∗ ≤ ẑ† ≤ z†, contradicting

our original assumption that z† < z∗, and completing the proof. □

Proof of Proposition 2 We take a constructive approach, showing how from an optimal solution

z∗ we can build a feasible solution z′ to (P ′) with the relevant guarantees. Consider a pair of routes

r, r′ such that r serves a school in the first tier, r′ serves a school in the second tier, and w∗
r,r′ = 1.

Then t1−∆t+T (r, r′)≤ τ ∗r +T (r, r′)≤ τr′ ≤ t2, so it is feasible to set w′
r,r′ = 1. Second, consider any

route r′′ for a third-tier school such that
∑

rw
∗
r′,r′′ = 1 (summing over optimal second-tier routes r′

only). Obviously it is feasible to set w′
r′,r′′ = 0 for all second-tier routes. Finally, consider a route r

serving a first tier school such that
∑

r′∈Rwr,r′ = 0, and consider a route r′ for a third-tier school

such that
∑

rw
∗
r,r′ = 1 and w′

r,r′ = 0 for all second-tier routes r. By property (5) of a three-tier

system, it is feasible to set w′
r,r′ = 1. Summing up these changes, we see that z′ = z∗ +N∗

2,3−N∗
1 .

Furthermore, by proposition 1 of Zeng et al. (2022), we have that N∗
2,3 ≤ z∗ which yields the second

inequality.
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